Piecewise quadratic trigonometric polynomial curves

Author:
Xuli Han

Journal:
Math. Comp. **72** (2003), 1369-1377

MSC (2000):
Primary 65D17, 65D10; Secondary 42A10

Published electronically:
March 26, 2003

MathSciNet review:
1972741

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Analogous to the quadratic B-spline curve, a piecewise quadratic trigonometric polynomial curve is presented in this paper. The quadratic trigonometric polynomial curve has continuity, while the quadratic B-spline curve has continuity. The quadratic trigonometric polynomial curve is closer to the given control polygon than the quadratic B-spline curve.

**1.**Josef Hoschek and Dieter Lasser,*Fundamentals of computer aided geometric design*, A K Peters, Ltd., Wellesley, MA, 1993. Translated from the 1992 German edition by Larry L. Schumaker. MR**1258308****2.**Per Erik Koch,*Multivariate trigonometric 𝐵-splines*, J. Approx. Theory**54**(1988), no. 2, 162–168. MR**955156**, 10.1016/0021-9045(88)90016-0**3.**Per Erik Koch, Tom Lyche, Marian Neamtu, and Larry L. Schumaker,*Control curves and knot insertion for trigonometric splines*, Adv. Comput. Math.**3**(1995), no. 4, 405–424. MR**1339172**, 10.1007/BF03028369**4.**Tom Lyche,*A Newton form for trigonometric Hermite interpolation*, BIT**19**(1979), no. 2, 229–235. MR**537783**, 10.1007/BF01930853**5.**T. Lyche and R. Winther,*A stable recurrence relation for trigonometric 𝐵-splines*, J. Approx. Theory**25**(1979), no. 3, 266–279. MR**531416**, 10.1016/0021-9045(79)90017-0**6.**Tom Lyche, Larry L. Schumaker, and Sonya Stanley,*Quasi-interpolants based on trigonometric splines*, J. Approx. Theory**95**(1998), no. 2, 280–309. MR**1652892**, 10.1006/jath.1998.3196**7.**J. M. Peña,*Shape preserving representations for trigonometric polynomial curves*, Comput. Aided Geom. Design**14**(1997), no. 1, 5–11. MR**1426188**, 10.1016/S0167-8396(96)00017-9**8.**I. J. Schoenberg,*On trigonometric spline interpolation*, J. Math. Mech.**13**(1964), 795–825. MR**0165300****9.**Javier Sánchez-Reyes,*Harmonic rational Bézier curves, 𝑝-Bézier curves and trigonometric polynomials*, Comput. Aided Geom. Design**15**(1998), no. 9, 909–923. MR**1647119**, 10.1016/S0167-8396(98)00031-4**10.**Guido Walz,*Identities for trigonometric 𝐵-splines with an application to curve design*, BIT**37**(1997), no. 1, 189–201. MR**1431366**, 10.1007/BF02510180**11.**Guido Walz,*Trigonometric Bézier and Stancu polynomials over intervals and triangles*, Comput. Aided Geom. Design**14**(1997), no. 4, 393–397. MR**1448014**, 10.1016/S0167-8396(96)00061-1

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65D17,
65D10,
42A10

Retrieve articles in all journals with MSC (2000): 65D17, 65D10, 42A10

Additional Information

**Xuli Han**

Affiliation:
Department of Applied Mathematics and Applied Software, Central South University, Changsha, 410083, Peoples Republic of China

Email:
xlhan@mail.csu.edu.cn

DOI:
https://doi.org/10.1090/S0025-5718-03-01530-8

Keywords:
Trigonometric polynomial,
trigonometric curve,
splines

Received by editor(s):
November 30, 2000

Received by editor(s) in revised form:
November 7, 2001

Published electronically:
March 26, 2003

Additional Notes:
This work was conducted while the author was visiting the geometric modeling group at the University of Florida.

Article copyright:
© Copyright 2003
American Mathematical Society