Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Maximum-norm estimates for resolvents of elliptic finite element operators


Authors: Nikolai Yu. Bakaev, Vidar Thomée and Lars B. Wahlbin
Journal: Math. Comp. 72 (2003), 1597-1610
MSC (2000): Primary 65M12, 65M06, 65M60
DOI: https://doi.org/10.1090/S0025-5718-02-01488-6
Published electronically: December 3, 2002
MathSciNet review: 1986795
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Omega$ be a convex domain with smooth boundary in $R^d$. It has been shown recently that the semigroup generated by the discrete Laplacian for quasi-uniform families of piecewise linear finite element spaces on $\Omega$ is analytic with respect to the maximum-norm, uniformly in the mesh-width. This implies a resolvent estimate of standard form in the maximum-norm outside some sector in the right halfplane, and conversely. Here we show directly that such a resolvent estimate holds outside any sector around the positive real axis, with arbitrarily small angle. This is useful in the study of fully discrete approximations based on $A(\theta)$-stable rational functions, with $\theta$ small.


References [Enhancements On Off] (What's this?)

  • 1. S.Agmon, A.Douglis, and L.Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Comm. Pure Appl. Math. 12 (1959), 623-727. MR 23:A2610
  • 2. N.Yu.Bakaev, Maximum norm resolvent estimates for elliptic finite element operators, BIT 41 (2001), 215-239. MR 2002c:65197
  • 3. N.Yu.Bakaev, S.Larsson, and V.Thomée, Long time behavior of backward difference type methods for parabolic equations with memory in Banach space, East-West J. Numer. Math. 6 (1998), 185-206. MR 99j:65143
  • 4. C.M. Chen and Y.Q. Huang, $W^{1,\infty}-$stability of finite element solutions of elliptic problems, Hunan Annals of Mathematics 6 (1986), 81-89. (In Chinese.) MR 92e:65144
  • 5. H. Chen, An $L^2$ and $L^\infty-$Error Analysis for Parabolic Finite Element Equations with Applications by Superconvergence and Error Expansions, Thesis, Heidelberg University 1993.
  • 6. M.Crouzeix, S.Larsson, and V.Thomée, Resolvent estimates for elliptic finite element operators in one dimension, Math. Comp. 63 (1994), 121-140. MR 95b:65134
  • 7. M.Crouzeix and V.Thomée, Resolvent estimates in $l_p$ for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes, Comput. Meth. Appl. Math. 1 (2001), 3-17. MR 2002c:65151
  • 8. J. Descloux, On finite element matrices, SIAM J. Numer. Anal 9 (1972), 260-265. MR 46:8402
  • 9. G.Da Prato and E.Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. MR 89f:47062
  • 10. J.Douglas, Jr., T.Dupont, and L.B.Wahlbin, The stability in $L^q$ of the $L^2$-projection into finite-element function spaces, Numer. Math. 23 (1975), 193-197. MR 52:4669
  • 11. H.Fujii, Some remarks on finite element analysis of time-dependent field problems, in Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press (1973), 91-106.
  • 12. R.Haverkamp, Eine Aussage zur $L_\infty-$Stabilität und zur genauen Konvergenzordnung der $H^1_0-$Projektionen. Numer. Math. 44 (1984), 393-405. MR 86f:65194
  • 13. J.P.Krasovskii, Isolation of singularities of the Green's function, Izv. Akad. Nauk SSSR 31 (1967), 935-966. MR 36:6788
  • 14. J.A.Nitsche and A.H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937-958. MR 51:9525
  • 15. J.A.Nitsche and M.F. Wheeler, $L_\infty-$boundedness of the finite element Galerkin operator for parabolic problems, Numer. Funct. Anal. Optimization 4 (1981-82), 325-353. MR 84a:65083
  • 16. C.Palencia, Maximum norm analysis of completely discrete finite element methods for parabolic problems, SIAM J. Numer. Anal. 33 (1996), 1654-1658. MR 97e:65099
  • 17. A.Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York - Berlin - Heidelberg - Tokyo, 1983. MR 85g:47061
  • 18. R. Rannacher, $L^\infty$-stability estimates and asymptotic error expansion for parabolic finite element equations, in Extrapolation and Defect Correction, Bonner Math. Schriften 228 (1991), 74-94. MR 93i:65093
  • 19. R.Rannacher and R.Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), 437-445. MR 83e:65180
  • 20. A.H.Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. Part1, Global estimates, Math. Comp. 67 (1998), 877-899. MR 98j:65082
  • 21. A.H.Schatz, V.Thomée, and L.B.Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math. 33 (1980), 265-304. MR 81g:65136
  • 22. A.H.Schatz, V.Thomée, and L.B.Wahlbin, Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations, Comm. Pure Appl. Math. 51 (1998), 1349-1385. MR 99h:65171
  • 23. A.H.Schatz and L.B.Wahlbin, On the quasi-optimality in $L_{\infty}$of the $\overset{o}{H}{}^1$-projection into finite element spaces, Math. Comp. 38 (1982), 1-22. MR 82m:65106
  • 24. R.Scott, Optimal $L^\infty$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), 681-697. MR 55:9560
  • 25. L.R.Scott and S.Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp. 54 (1990), 483-493. MR 90j:65021
  • 26. H.B.Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc. 199 (1974), 141-161. MR 50:10532
  • 27. V.Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, Springer - Verlag, Berlin - Heidelberg - New York, 1997. MR 98m:65007
  • 28. V.Thomée and L.B.Wahlbin, Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space varible, Numer. Math. 41 (1983), 345-371. MR 85f:65099
  • 29. V.Thomée and L.B.Wahlbin, Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions, Numer. Math. 87 (2000), 373-389. MR 2001k:65139
  • 30. H.Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag, Berlin, 1978. MR 80i:46032a
  • 31. L.B.Wahlbin, A quasi-optimal estimate in piecewise polynomial Galerkin approximation of parabolic problems, in Numerical Analysis (Dundee, 1981), Lecture Notes in Mathematics No. 912, Springer-Verlag, Berlin-New York, 1982, pp. 230-245. MR 83f:65157

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65M12, 65M06, 65M60

Retrieve articles in all journals with MSC (2000): 65M12, 65M06, 65M60


Additional Information

Nikolai Yu. Bakaev
Affiliation: Department of Mathematics, Institute of Economics and Business, Berzarina St. 12, Moscow 123298, Russia
Email: bakaev@postman.ru

Vidar Thomée
Affiliation: Department of Mathematics, Chalmers University of Technology, S-41296 Göteborg, Sweden
Email: thomee@math.chalmers.se

Lars B. Wahlbin
Affiliation: Department of mathematics, Cornell University, Ithaca New York 14853
Email: wahlbin@math.cornell.edu

DOI: https://doi.org/10.1090/S0025-5718-02-01488-6
Keywords: Resolvent estimates, maximum-norm, elliptic, parabolic, finite elements
Received by editor(s): September 7, 2001
Received by editor(s) in revised form: March 1, 2002
Published electronically: December 3, 2002
Additional Notes: The first author was partly supported by the Swiss National Science Foundation under Grant 20-56577.99
The second and third authors were partly supported by the U.S. National Science Foundation under Grant DMS 0071412
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society