Monic integer Chebyshev problem

Authors:
P. B. Borwein, C. G. Pinner and I. E. Pritsker

Journal:
Math. Comp. **72** (2003), 1901-1916

MSC (2000):
Primary 11C08; Secondary 30C10

DOI:
https://doi.org/10.1090/S0025-5718-03-01477-7

Published electronically:
January 8, 2003

MathSciNet review:
1986811

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem of minimizing the supremum norm by monic polynomials with integer coefficients. Let denote the monic polynomials of degree with integer coefficients. A *monic integer Chebyshev polynomial* satisfies

and the

*monic integer Chebyshev constant*is then defined by

This is the obvious analogue of the more usual

*integer Chebyshev constant*that has been much studied.

We compute for various sets, including all finite sets of rationals, and make the following conjecture, which we prove in many cases.

**Conjecture.** *Suppose * * is an interval whose endpoints are consecutive Farey fractions. This is characterized by * * Then*

This should be contrasted with the nonmonic integer Chebyshev constant case, where the only intervals for which the constant is exactly computed are intervals of length 4 or greater.

**1.**P. Borwein and T. Erdélyi,*Polynomials and Polynomial Inequalities*, Springer-Verlag, New York, 1995. MR**97e:41001****2.**P. Borwein and T. Erdélyi,*The integer Chebyshev problem*, Math. Comp.**65**(1996), 661-681. MR**96g:11077****3.**G. V. Chudnovsky,*Number theoretic applications of polynomials with rational coefficients defined by extremality conditions*, Arithmetic and Geometry, Vol. I (M. Artin and J. Tate, eds.), pp. 61-105, Birkhäuser, Boston, 1983. MR**86c:11052****4.**M. Fekete,*Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten*, Math. Zeit.**17**(1923), 228-249.**5.**M. Fekete,*Über den tranfiniten Durchmesser ebener Punktmengen II*, Math. Zeit.**32**(1930), 215-221.**6.**Le Baron O. Ferguson,*Approximation by Polynomials with Integral Coefficients*, Amer. Math. Soc., Providence, R.I., 1980. MR**81g:41011****7.**V. Flammang, G. Rhin and C.J. Smyth,*The integer transfinite diameter of intervals and totally real algebraic integers*, J. Théor. Nombres Bordeaux**9**(1997), 137-168. MR**98g:11119****8.**G. M. Goluzin,*Geometric Theory of Functions of a Complex Variable*, Vol. 26 of Translations of Mathematical Monographs, Amer. Math. Soc., Providence, R.I., 1969. MR**40:308****9.**L. Habsieger and B. Salvy,*On integer Chebyshev polynomials*, Math. Comp.**218**(1997), 763-770. MR**97f:11053****10.**D. Hilbert,*Ein Beitrag zur Theorie des Legendreschen Polynoms*, Acta Math.**18**(1894), 155-159.**11.**H. L. Montgomery,*Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis*, CBMS, Vol. 84, Amer. Math. Soc., Providence, R.I., 1994. MR**96i:11002****12.**Y. Okada,*On approximate polynomials with integral coefficients only*, Tohoku Math. J.**23**(1924), 26-35.**13.**I. E. Pritsker,*Small polynomials with integer coefficients*, in press.**14.**T. Ransford,*Potential Theory in the Complex Plane*, Cambridge University Press, Cambridge, 1995. MR**96e:31001****15.**T. J. Rivlin,*Chebyshev Polynomials*, John Wiley & Sons, New York, 1990. MR**92a:41016****16.**R. M. Trigub,*Approximation of functions with Diophantine conditions by polynomials with integral coefficients*, in ``Metric Questions of the Theory of Functions and Mappings", No. 2, Naukova Dumka, Kiev, 1971, pp. 267-333. (Russian) MR**47:683****17.**M. Tsuji,*Potential Theory in Modern Function Theory*, Chelsea Publ. Co., New York, 1975. MR**54:2990**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11C08,
30C10

Retrieve articles in all journals with MSC (2000): 11C08, 30C10

Additional Information

**P. B. Borwein**

Affiliation:
Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada

Email:
pborwein@cecm.sfu.ca

**C. G. Pinner**

Affiliation:
Department of Mathematics, 138 Cardwell Hall, Kansas State University, Manhattan, Kansas 66506

Email:
pinner@math.ksu.edu

**I. E. Pritsker**

Affiliation:
Department of Mathematics, 401 Mathematical Sciences, Oklahoma State University, Stillwater, Oklahoma 74078

Email:
igor@math.okstate.edu

DOI:
https://doi.org/10.1090/S0025-5718-03-01477-7

Keywords:
Chebyshev polynomials,
integer Chebyshev constant,
integer transfinite diameter.

Received by editor(s):
August 29, 2001

Received by editor(s) in revised form:
December 20, 2001

Published electronically:
January 8, 2003

Additional Notes:
Research of the authors was supported in part by the following grants: NSERC of Canada and MITACS (Borwein), NSF grant EPS-9874732 and matching support from the state of Kansas (Pinner), and NSF grant DMS-9996410 (Pritsker).

Article copyright:
© Copyright 2003
by the authors