Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Monic integer Chebyshev problem

Authors: P. B. Borwein, C. G. Pinner and I. E. Pritsker
Journal: Math. Comp. 72 (2003), 1901-1916
MSC (2000): Primary 11C08; Secondary 30C10
Published electronically: January 8, 2003
MathSciNet review: 1986811
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem of minimizing the supremum norm by monic polynomials with integer coefficients. Let ${\mathcal{M}}_n({\mathbb{Z} })$ denote the monic polynomials of degree $n$ with integer coefficients. A monic integer Chebyshev polynomial $M_n \in {\mathcal{M}}_n({\mathbb{Z} })$satisfies

\begin{displaymath}\Vert M_n \Vert _{E} = \inf_{P_n \in{\mathcal{M}}_n ( {\mathbb{Z} })} \Vert P_n \Vert _{E}. \end{displaymath}

and the monic integer Chebyshev constant is then defined by

\begin{displaymath}t_M(E) := \lim_{n \rightarrow \infty} \Vert M_n \Vert _{E}^{1/n}. \end{displaymath}

This is the obvious analogue of the more usual integer Chebyshev constant that has been much studied.

We compute $t_M(E)$ for various sets, including all finite sets of rationals, and make the following conjecture, which we prove in many cases.

Conjecture. Suppose $[{a_2}/{b_2},{a_1}/{b_1}]$ is an interval whose endpoints are consecutive Farey fractions. This is characterized by $a_1b_2-a_2b_1=1.$ Then

\begin{displaymath}t_M[{a_2}/{b_2},{a_1}/{b_1}] = \max(1/b_1,1/b_2).\end{displaymath}

This should be contrasted with the nonmonic integer Chebyshev constant case, where the only intervals for which the constant is exactly computed are intervals of length 4 or greater.

References [Enhancements On Off] (What's this?)

  • 1. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995. MR 97e:41001
  • 2. P. Borwein and T. Erdélyi, The integer Chebyshev problem, Math. Comp. 65 (1996), 661-681. MR 96g:11077
  • 3. G. V. Chudnovsky, Number theoretic applications of polynomials with rational coefficients defined by extremality conditions, Arithmetic and Geometry, Vol. I (M. Artin and J. Tate, eds.), pp. 61-105, Birkhäuser, Boston, 1983. MR 86c:11052
  • 4. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Zeit. 17 (1923), 228-249.
  • 5. M. Fekete, Über den tranfiniten Durchmesser ebener Punktmengen II, Math. Zeit. 32 (1930), 215-221.
  • 6. Le Baron O. Ferguson, Approximation by Polynomials with Integral Coefficients, Amer. Math. Soc., Providence, R.I., 1980. MR 81g:41011
  • 7. V. Flammang, G. Rhin and C.J. Smyth, The integer transfinite diameter of intervals and totally real algebraic integers, J. Théor. Nombres Bordeaux 9 (1997), 137-168. MR 98g:11119
  • 8. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Vol. 26 of Translations of Mathematical Monographs, Amer. Math. Soc., Providence, R.I., 1969. MR 40:308
  • 9. L. Habsieger and B. Salvy, On integer Chebyshev polynomials, Math. Comp. 218 (1997), 763-770. MR 97f:11053
  • 10. D. Hilbert, Ein Beitrag zur Theorie des Legendreschen Polynoms, Acta Math. 18 (1894), 155-159.
  • 11. H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS, Vol. 84, Amer. Math. Soc., Providence, R.I., 1994. MR 96i:11002
  • 12. Y. Okada, On approximate polynomials with integral coefficients only, Tohoku Math. J. 23 (1924), 26-35.
  • 13. I. E. Pritsker, Small polynomials with integer coefficients, in press.
  • 14. T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995. MR 96e:31001
  • 15. T. J. Rivlin, Chebyshev Polynomials, John Wiley & Sons, New York, 1990. MR 92a:41016
  • 16. R. M. Trigub, Approximation of functions with Diophantine conditions by polynomials with integral coefficients, in ``Metric Questions of the Theory of Functions and Mappings", No. 2, Naukova Dumka, Kiev, 1971, pp. 267-333. (Russian) MR 47:683
  • 17. M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publ. Co., New York, 1975. MR 54:2990

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11C08, 30C10

Retrieve articles in all journals with MSC (2000): 11C08, 30C10

Additional Information

P. B. Borwein
Affiliation: Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada

C. G. Pinner
Affiliation: Department of Mathematics, 138 Cardwell Hall, Kansas State University, Manhattan, Kansas 66506

I. E. Pritsker
Affiliation: Department of Mathematics, 401 Mathematical Sciences, Oklahoma State University, Stillwater, Oklahoma 74078

Keywords: Chebyshev polynomials, integer Chebyshev constant, integer transfinite diameter.
Received by editor(s): August 29, 2001
Received by editor(s) in revised form: December 20, 2001
Published electronically: January 8, 2003
Additional Notes: Research of the authors was supported in part by the following grants: NSERC of Canada and MITACS (Borwein), NSF grant EPS-9874732 and matching support from the state of Kansas (Pinner), and NSF grant DMS-9996410 (Pritsker).
Article copyright: © Copyright 2003 by the authors

American Mathematical Society