On the total number of prime factors of an odd perfect number

Authors:
D. E. Iannucci and R. M. Sorli

Journal:
Math. Comp. **72** (2003), 2077-2084

MSC (2000):
Primary 11A25, 11Y70

DOI:
https://doi.org/10.1090/S0025-5718-03-01522-9

Published electronically:
May 8, 2003

MathSciNet review:
1986824

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We say is *perfect* if , where denotes the sum of the positive divisors of . No odd perfect numbers are known, but it is well known that if such a number exists, it must have prime factorization of the form , where , , ..., are distinct primes and . We prove that if or for all , , then . We also prove as our main result that , where . This improves a result of Sayers given in 1986.

**[1]**A. Brauer,*On the nonexistence of odd perfect numbers of the form*Bull. Amer. Math. Soc.**49**(1943), 712-718. MR**9:90b****[2]**E. Z. Chein, Ph.D. Thesis, Pennsylvania State University (1979).**[3]**G. L. Cohen,*On the total number of prime factors of an odd perfect number*Appendix A.3, Ph.D. Thesis, University of New South Wales (1982).**[4]**-,*On the largest component of an odd perfect number*J. Austral. Math. Soc. Ser. A**42**(1987), 280-286. MR**87m:11005****[5]**G. L. Cohen and R. J. Williams,*Extensions of some results concerning odd perfect numbers*J. Fibonacci Quart.**23**(1985), 70-76. MR**86f:11009****[6]**P. Hagis,*Outline of a proof that every odd perfect number has at least eight prime factors*Math. Comp.**35**(1980), 1027-1032. MR**81k:10004****[7]**P. Hagis,*Sketch of a proof that every odd perfect number relatively prime to 3 has at least eleven prime factors*Math. Comp.**40**(1983), 399-404. MR**85b:11004****[8]**H.-J. Kanold,*Sätze über kreisteilungspolynome und ihre andwendungen auf einiger zahlentheoretische problem II*J. Reine Angew. Math.**188**(1950), 129-146. MR**13:443b****[9]**M. Kishore,*Odd perfect numbers not divisible by three are divisible by at least eleven distinct primes*Math. Comp.**40**(1983), 405-411. MR**84d:10009****[10]**W. McDaniel,*The nonexistence of odd perfect numbers of a certain form*Arch. Math.**21**(1970), 52-53. MR**41:3369****[11]**W. McDaniel,*On the divisibility of an odd perfect number by the sixth power of a prime*Math. Comp.**25**(1971), 383-385. MR**45:5074****[12]**M. Sayers, M.App.Sc. Thesis, New South Wales Institute of Technology (1986).**[13]**R. Steuerwald,*Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl*S.-B. Math.-Nat. Abt. Bayer. Akad. Wiss. (1937), 68-73.

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11A25,
11Y70

Retrieve articles in all journals with MSC (2000): 11A25, 11Y70

Additional Information

**D. E. Iannucci**

Affiliation:
University of the Virgin Islands, St. Thomas, Virgin Islands 00802

Email:
diannuc@uvi.edu

**R. M. Sorli**

Affiliation:
Department of Mathematical Sciences, University of Technology, Sydney, Broadway, 2007, Australia

Email:
rons@maths.uts.edu.au

DOI:
https://doi.org/10.1090/S0025-5718-03-01522-9

Keywords:
Odd perfect numbers,
factorization

Received by editor(s):
November 7, 2001

Published electronically:
May 8, 2003

Additional Notes:
The authors are grateful for the advice and assistance given by Graeme Cohen

Article copyright:
© Copyright 2003
American Mathematical Society