Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Computation of Stark-Tamagawa units

Author: W. Bley
Journal: Math. Comp. 72 (2003), 1963-1974
MSC (2000): Primary 11R27, 11R29, 11R42
Published electronically: May 30, 2003
MathSciNet review: 1986815
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $K$ be a totally real number field and let $l$denote an odd prime number. We design an algorithm which computes strong numerical evidence for the validity of the ``Equivariant Tamagawa Number Conjecture'' for the ${\mathbb{Q} [G]} $-equivariant motive $h^0(\mathrm{Spec}(L))$, where $L/K$ is a cyclic extension of degree $l$ and group $G$. This conjecture is a very deep refinement of the classical analytic class number formula. In the course of the algorithm, we compute a set of special units which must be considered as a generalization of the (conjecturally existing) Stark units associated to first order vanishing Dirichlet $L$-functions.

References [Enhancements On Off] (What's this?)

  • 1. W. Bley and D. Burns, Equivariant Tamagawa numbers, Fitting ideals and Iwasawa theory, Compositio Math. 126 (2001), no. 2, 213–247. MR 1827644, 10.1023/A:1017591827879
  • 2. W. Bley and D. Burns, Explicit units and the equivariant Tamagawa number conjecture, Amer. J. Math. 123 (2001), no. 5, 931–949. MR 1854115
  • 3. D. Burns, Iwasawa theory and p-adic Hodge theory over non-commutative algebras I , preprint 1997.
  • 4. D. Burns, Equivariant Tamagawa numbers and Galois module theory. I, Compositio Math. 129 (2001), no. 2, 203–237. MR 1863302, 10.1023/A:1014502826745
  • 5. D. Burns, On a refined class number formula for higher derivatives of $L$-series , preprint 2001.
  • 6. D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501–570 (electronic). MR 1884523
  • 7. D. Burns, C. Greither, On the Equivariant Tamagawa Number Conjecture for Tate motives, to appear in Invent. Math.
  • 8. T. Chinburg, On the Galois structure of algebraic integers and 𝑆-units, Invent. Math. 74 (1983), no. 3, 321–349. MR 724009, 10.1007/BF01394240
  • 9. Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313
  • 10. David Holland, Homological equivalences of modules and their projective invariants, J. London Math. Soc. (2) 43 (1991), no. 3, 396–411. MR 1113383, 10.1112/jlms/s2-43.3.396
  • 11. B. Mazur and A. Wiles, Class fields of abelian extensions of 𝑄, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, 10.1007/BF01388599
  • 12. S.Y. Kim, On the Equivariant Tamagawa Number Conjecture for Quaternion Fields, Thesis, King's College, London (2002).
  • 13. Cristian D. Popescu, On a refined Stark conjecture for function fields, Compositio Math. 116 (1999), no. 3, 321–367. MR 1691163, 10.1023/A:1000833610462
  • 14. Cristian D. Popescu, Base change for Stark-type conjectures “over ℤ”, J. Reine Angew. Math. 542 (2002), 85–111. MR 1880826, 10.1515/crll.2002.010
  • 15. X. F. Roblot, Algorithmes de factorisation dans les extensions relatives et application de la conjecture de Stark à la construction des corps de classes de rayon, Thesis, Université Bordeaux I (1997).
  • 16. Karl Rubin, A Stark conjecture “over 𝐙” for abelian 𝐋-functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33–62 (English, with English and French summaries). MR 1385509
  • 17. J. Tate, The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J. 27 (1966), 709–719. MR 0207680
  • 18. John Tate, Les conjectures de Stark sur les fonctions 𝐿 d’Artin en 𝑠=0, Progress in Mathematics, vol. 47, Birkhäuser Boston, Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R27, 11R29, 11R42

Retrieve articles in all journals with MSC (2000): 11R27, 11R29, 11R42

Additional Information

W. Bley
Affiliation: Institut für Mathematik, Universität Augsburg, Universitätsstrasse 8, D-86159 Augsburg, Germany

Received by editor(s): November 7, 2001
Received by editor(s) in revised form: April 26, 2002
Published electronically: May 30, 2003
Additional Notes: The author was supported in part by a DFG Grant.
Article copyright: © Copyright 2003 American Mathematical Society