Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An efficient algorithm for the computation of Galois automorphisms


Author: Bill Allombert
Journal: Math. Comp. 73 (2004), 359-375
MSC (2000): Primary 11Y40
DOI: https://doi.org/10.1090/S0025-5718-03-01476-5
Published electronically: July 17, 2003
MathSciNet review: 2034127
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe an algorithm for computing the Galois automorphisms of a Galois extension which generalizes the algorithm of Acciaro and Klüners to the non-Abelian case. This is much faster in practice than algorithms based on LLL or factorization.


References [Enhancements On Off] (What's this?)

  • 1. John ABBOTT, Victor SHOUP and Paul ZIMMERMAN, Factorization in \(\mathbb{Z} [x]\): The Searching Phase (Carlo Traverso, ed.), Proc. ISSAC 2000, ACM Press, 2000, pp. 1-7. http://www.shoup.net/papers/asz.ps.Z.
  • 2. Vincenzo ACCIARO and Jürgen KLÜNERS, Computing Automorphisms of Abelian Number Fields, Math. Comp., 68, 1999, 1179-1186. MR 99i:11099
  • 3. List of polynomials of the benchmark, http://www.math.u-bordeaux.fr/~allomber/ nfgaloisconj_benchmark.html
  • 4. Henri COHEN, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer, 1993. MR 94i:11105
  • 5. Marshall HALL, The theory of groups, Macmillan, New York, 1959. MR 21:1996
  • 6. Jürgen KLÜNERS, Über die Berechnung von Automorphismen und Teilkörpern algebraischer Zahlkörper, Thesis, Technischen Universitat Berlin, 1997.
  • 7. Jürgen KLÜNERS, On computing subfields--A detailed description of the algorithm, J. Théorie des Nombres Bordeaux, 10, 1998, 243-271. MR 2002c:11178
  • 8. Jürgen KLÜNERS and Gunter MALLE, Explicit Galois realization of transitive groups of degree up to 15, J. Symb. Comput. 30, 2000, 675-716. MR 2001i:12005
  • 9. M. DABERKOW, C. FIEKER, J. KLÜNERS, M. POHST, K. ROEGNER, M. SCHÖRNIG and K. WILDANGER, KANT V4, J. Symb. Comput., 24, 1997, 267-283. MR 99g:11150
  • 10. W. BOSMA, J. CANNON and C. PLAYOUST, The Magma algebra system I: The user language, J. Symb. Comput., 24, 1997, 235-265. CMP 98:05
  • 11. PARI, C. BATUT, K. BELABAS, D. BERNARDI, H. COHEN and M. OLIVIER, User's Guide to PARI-GP, version 2.2.1.
  • 12. Xavier ROBLOT, Algorithmes de factorisation dans les extensions relatives et applications de la conjecture de Stark à la construction de corps de classes de rayon, Thesis, Université Bordeaux I, 1997.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11Y40

Retrieve articles in all journals with MSC (2000): 11Y40


Additional Information

Bill Allombert
Affiliation: Université Bordeaux I, Laboratoire A2X, 351 cours de la Libération, 33 405 Talence, France
Email: allomber@math.u-bordeaux.fr

DOI: https://doi.org/10.1090/S0025-5718-03-01476-5
Received by editor(s): March 24, 2000
Published electronically: July 17, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society