Substructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions

Authors:
Qiya Hu and Jun Zou

Journal:
Math. Comp. **73** (2004), 35-61

MSC (2000):
Primary 65N30, 65N55

Published electronically:
August 19, 2003

MathSciNet review:
2034110

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the saddle-point problems arising from edge element discretizations of Maxwell's equations in a general three dimensional nonconvex polyhedral domain. A new augmented technique is first introduced to transform the problems into equivalent augmented saddle-point systems so that they can be solved by some existing preconditioned iterative methods. Then some substructuring preconditioners are proposed, with very simple coarse solvers, for the augmented saddle-point systems. With the preconditioners, the condition numbers of the preconditioned systems are nearly optimal; namely, they grow only as the logarithm of the ratio between the subdomain diameter and the finite element mesh size.

**1.**Ana Alonso and Alberto Valli,*Some remarks on the characterization of the space of tangential traces of 𝐻(𝑟𝑜𝑡;Ω) and the construction of an extension operator*, Manuscripta Math.**89**(1996), no. 2, 159–178. MR**1371994**, 10.1007/BF02567511**2.**Ana Alonso and Alberto Valli,*An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations*, Math. Comp.**68**(1999), no. 226, 607–631. MR**1609607**, 10.1090/S0025-5718-99-01013-3**3.**C. Amrouche, C. Bernardi, M. Dauge, and V. Girault,*Vector potentials in three-dimensional non-smooth domains*, Math. Methods Appl. Sci.**21**(1998), no. 9, 823–864 (English, with English and French summaries). MR**1626990**, 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B**4.**James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz,*The construction of preconditioners for elliptic problems by substructuring. IV*, Math. Comp.**53**(1989), no. 187, 1–24. MR**970699**, 10.1090/S0025-5718-1989-0970699-3**5.**James H. Bramble, Joseph E. Pasciak, and Apostol T. Vassilev,*Analysis of the inexact Uzawa algorithm for saddle point problems*, SIAM J. Numer. Anal.**34**(1997), no. 3, 1072–1092. MR**1451114**, 10.1137/S0036142994273343**6.**James H. Bramble and Joseph E. Pasciak,*A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems*, Math. Comp.**50**(1988), no. 181, 1–17. MR**917816**, 10.1090/S0025-5718-1988-0917816-8**7.**Michel Cessenat,*Mathematical methods in electromagnetism*, Series on Advances in Mathematics for Applied Sciences, vol. 41, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. Linear theory and applications. MR**1409140****8.**Zhiming Chen, Qiang Du, and Jun Zou,*Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients*, SIAM J. Numer. Anal.**37**(2000), no. 5, 1542–1570. MR**1759906**, 10.1137/S0036142998349977**9.**P. Ciarlet Jr. and Jun Zou,*Fully discrete finite element approaches for time-dependent Maxwell’s equations*, Numer. Math.**82**(1999), no. 2, 193–219 (English, with English and French summaries). MR**1685459**, 10.1007/s002110050417**10.**Martin Costabel,*A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains*, Math. Methods Appl. Sci.**12**(1990), no. 4, 365–368. MR**1048563**, 10.1002/mma.1670120406**11.**Robert Dautray and Jacques-Louis Lions,*Mathematical analysis and numerical methods for science and technology. Vol. 2*, Springer-Verlag, Berlin, 1988. Functional and variational methods; With the collaboration of Michel Artola, Marc Authier, Philippe Bénilan, Michel Cessenat, Jean Michel Combes, Hélène Lanchon, Bertrand Mercier, Claude Wild and Claude Zuily; Translated from the French by Ian N. Sneddon. MR**969367****12.**Vivette Girault and Pierre-Arnaud Raviart,*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383****13.**J. Gopalakrishnan and J. Pasciak,*Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell's equations*, Math. Comp.,**72**(2003), 1-16.**14.**R. Hiptmair,*Multigrid method for Maxwell’s equations*, SIAM J. Numer. Anal.**36**(1999), no. 1, 204–225. MR**1654571**, 10.1137/S0036142997326203**15.**Qi Ya Hu and Guo Ping Liang,*A general framework for constructing an interface preconditioner for domain decomposition methods*, Math. Numer. Sin.**21**(1999), no. 1, 117–128 (Chinese, with English summary); English transl., Chinese J. Numer. Math. Appl.**21**(1999), no. 2, 83–94. MR**1676186****16.**Qi-ya Hu, Guo-ping Liang, and Jin-zhao Liu,*Construction of a preconditioner for domain decomposition methods with polynomial Lagrangian multipliers*, J. Comput. Math.**19**(2001), no. 2, 213–224. MR**1816686****17.**Qiya Hu and Jun Zou,*An iterative method with variable relaxation parameters for saddle-point problems*, SIAM J. Matrix Anal. Appl.**23**(2001), no. 2, 317–338. MR**1871315**, 10.1137/S0895479899364064**18.**Q. Hu and J. Zou,*Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems*, Numer. Math.,**93**(2002), 333-359.**19.**Q. Hu and J. Zou,*Substructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions*. Technical Report CUHK 2002-16(256), Department of Mathematics, The Chinese University of Hong Kong, 2002.**20.**Q. Hu and J. Zou,*A non-overlapping domain decomposition method for Maxwell's equations in three dimensions*. Accepted for publication in SIAM J. Numer. Anal.**21.**Peter Monk,*Analysis of a finite element method for Maxwell’s equations*, SIAM J. Numer. Anal.**29**(1992), no. 3, 714–729. MR**1163353**, 10.1137/0729045**22.**J.-C. Nédélec,*Mixed finite elements in 𝑅³*, Numer. Math.**35**(1980), no. 3, 315–341. MR**592160**, 10.1007/BF01396415**23.**R. A. Nicolaides and D-Q. Wang,*Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions*, Math. Comp.**67**(1998), no. 223, 947–963. MR**1474654**, 10.1090/S0025-5718-98-00971-5**24.**Torgeir Rusten and Ragnar Winther,*A preconditioned iterative method for saddlepoint problems*, SIAM J. Matrix Anal. Appl.**13**(1992), no. 3, 887–904. Iterative methods in numerical linear algebra (Copper Mountain, CO, 1990). MR**1168084**, 10.1137/0613054**25.**Jukka Saranen,*On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media*, J. Math. Anal. Appl.**91**(1983), no. 1, 254–275. MR**688544**, 10.1016/0022-247X(83)90104-X**26.**Barry F. Smith,*A domain decomposition algorithm for elliptic problems in three dimensions*, Numer. Math.**60**(1991), no. 2, 219–234. MR**1133580**, 10.1007/BF01385722**27.**Barry F. Smith, Petter E. Bjørstad, and William D. Gropp,*Domain decomposition*, Cambridge University Press, Cambridge, 1996. Parallel multilevel methods for elliptic partial differential equations. MR**1410757****28.**P. Tallec,*Domain Decomposition Methods in Computational Mechanics*, Comput. Mech. Adv., 2: 1321-220, 1994.**29.**Andrea Toselli,*Overlapping Schwarz methods for Maxwell’s equations in three dimensions*, Numer. Math.**86**(2000), no. 4, 733–752. MR**1794350**, 10.1007/PL00005417**30.**Andrea Toselli, Olof B. Widlund, and Barbara I. Wohlmuth,*An iterative substructuring method for Maxwell’s equations in two dimensions*, Math. Comp.**70**(2001), no. 235, 935–949. MR**1710632**, 10.1090/S0025-5718-00-01244-8**31.**Jinchao Xu,*Iterative methods by space decomposition and subspace correction*, SIAM Rev.**34**(1992), no. 4, 581–613. MR**1193013**, 10.1137/1034116**32.**Jinchao Xu and Jun Zou,*Some nonoverlapping domain decomposition methods*, SIAM Rev.**40**(1998), no. 4, 857–914. MR**1659681**, 10.1137/S0036144596306800

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65N30,
65N55

Retrieve articles in all journals with MSC (2000): 65N30, 65N55

Additional Information

**Qiya Hu**

Affiliation:
Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China

Email:
hqy@lsec.cc.ac.cn

**Jun Zou**

Affiliation:
Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Email:
zou@math.cuhk.edu.hk

DOI:
https://doi.org/10.1090/S0025-5718-03-01541-2

Keywords:
Maxwell's equations,
N\'ed\'elec finite elements,
nonoverlapping domain decomposition,
condition numbers

Received by editor(s):
February 21, 2002

Received by editor(s) in revised form:
July 15, 2002

Published electronically:
August 19, 2003

Additional Notes:
The work of the first author was supported by Special Funds for Major State Basic Research Projects of China G1999032804.

The work of the second author was partially supported by Hong Kong RGC Grants CUHK4048/02P and CUHK4292/00P

Article copyright:
© Copyright 2003
American Mathematical Society