Substructuring preconditioners for saddlepoint problems arising from Maxwell's equations in three dimensions
Authors:
Qiya Hu and Jun Zou
Journal:
Math. Comp. 73 (2004), 3561
MSC (2000):
Primary 65N30, 65N55
Published electronically:
August 19, 2003
MathSciNet review:
2034110
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper is concerned with the saddlepoint problems arising from edge element discretizations of Maxwell's equations in a general three dimensional nonconvex polyhedral domain. A new augmented technique is first introduced to transform the problems into equivalent augmented saddlepoint systems so that they can be solved by some existing preconditioned iterative methods. Then some substructuring preconditioners are proposed, with very simple coarse solvers, for the augmented saddlepoint systems. With the preconditioners, the condition numbers of the preconditioned systems are nearly optimal; namely, they grow only as the logarithm of the ratio between the subdomain diameter and the finite element mesh size.
 1.
Ana
Alonso and Alberto
Valli, Some remarks on the characterization of the space of
tangential traces of 𝐻(𝑟𝑜𝑡;Ω) and the
construction of an extension operator, Manuscripta Math.
89 (1996), no. 2, 159–178. MR 1371994
(96k:46057), http://dx.doi.org/10.1007/BF02567511
 2.
Ana
Alonso and Alberto
Valli, An optimal domain decomposition
preconditioner for lowfrequency timeharmonic Maxwell equations,
Math. Comp. 68 (1999), no. 226, 607–631. MR 1609607
(99i:78002), http://dx.doi.org/10.1090/S0025571899010133
 3.
C.
Amrouche, C.
Bernardi, M.
Dauge, and V.
Girault, Vector potentials in threedimensional nonsmooth
domains, Math. Methods Appl. Sci. 21 (1998),
no. 9, 823–864 (English, with English and French summaries). MR 1626990
(99e:35037), http://dx.doi.org/10.1002/(SICI)10991476(199806)21:9<823::AIDMMA976>3.0.CO;2B
 4.
James
H. Bramble, Joseph
E. Pasciak, and Alfred
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. IV, Math. Comp. 53 (1989), no. 187, 1–24. MR 970699
(89m:65098), http://dx.doi.org/10.1090/S00255718198909706993
 5.
James
H. Bramble, Joseph
E. Pasciak, and Apostol
T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle
point problems, SIAM J. Numer. Anal. 34 (1997),
no. 3, 1072–1092. MR 1451114
(98c:65182), http://dx.doi.org/10.1137/S0036142994273343
 6.
James
H. Bramble and Joseph
E. Pasciak, A preconditioning technique for
indefinite systems resulting from mixed approximations of elliptic
problems, Math. Comp. 50
(1988), no. 181, 1–17. MR 917816
(89m:65097a), http://dx.doi.org/10.1090/S00255718198809178168
 7.
Michel
Cessenat, Mathematical methods in electromagnetism, Series on
Advances in Mathematics for Applied Sciences, vol. 41, World
Scientific Publishing Co., Inc., River Edge, NJ, 1996. Linear theory and
applications. MR
1409140 (97j:78001)
 8.
Zhiming
Chen, Qiang
Du, and Jun
Zou, Finite element methods with matching and nonmatching meshes
for Maxwell equations with discontinuous coefficients, SIAM J. Numer.
Anal. 37 (2000), no. 5, 1542–1570. MR 1759906
(2001h:78044), http://dx.doi.org/10.1137/S0036142998349977
 9.
P.
Ciarlet Jr. and Jun
Zou, Fully discrete finite element approaches for timedependent
Maxwell’s equations, Numer. Math. 82 (1999),
no. 2, 193–219 (English, with English and French summaries). MR 1685459
(2000c:65083), http://dx.doi.org/10.1007/s002110050417
 10.
Martin
Costabel, A remark on the regularity of solutions of
Maxwell’s equations on Lipschitz domains, Math. Methods Appl.
Sci. 12 (1990), no. 4, 365–368. MR 1048563
(91c:35028), http://dx.doi.org/10.1002/mma.1670120406
 11.
Robert
Dautray and JacquesLouis
Lions, Mathematical analysis and numerical methods for science and
technology. Vol. 2, SpringerVerlag, Berlin, 1988. Functional and
variational methods; With the collaboration of Michel Artola, Marc Authier,
Philippe Bénilan, Michel Cessenat, Jean Michel Combes,
Hélène Lanchon, Bertrand Mercier, Claude Wild and Claude
Zuily; Translated from the French by Ian N. Sneddon. MR 969367
(89m:00001)
 12.
Vivette
Girault and PierreArnaud
Raviart, Finite element methods for NavierStokes equations,
Springer Series in Computational Mathematics, vol. 5, SpringerVerlag,
Berlin, 1986. Theory and algorithms. MR 851383
(88b:65129)
 13.
J. Gopalakrishnan and J. Pasciak, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell's equations, Math. Comp., 72 (2003), 116.
 14.
R.
Hiptmair, Multigrid method for Maxwell’s equations, SIAM
J. Numer. Anal. 36 (1999), no. 1, 204–225. MR 1654571
(99j:65229), http://dx.doi.org/10.1137/S0036142997326203
 15.
Qi
Ya Hu and Guo
Ping Liang, A general framework for constructing an interface
preconditioner for domain decomposition methods, Math. Numer. Sin.
21 (1999), no. 1, 117–128 (Chinese, with
English summary); English transl., Chinese J. Numer. Math. Appl.
21 (1999), no. 2, 83–94. MR 1676186
(99m:65238)
 16.
Qiya
Hu, Guoping
Liang, and Jinzhao
Liu, Construction of a preconditioner for domain decomposition
methods with polynomial Lagrangian multipliers, J. Comput. Math.
19 (2001), no. 2, 213–224. MR 1816686
(2001k:65186)
 17.
Qiya
Hu and Jun
Zou, An iterative method with variable relaxation parameters for
saddlepoint problems, SIAM J. Matrix Anal. Appl. 23
(2001), no. 2, 317–338. MR 1871315
(2002j:65041), http://dx.doi.org/10.1137/S0895479899364064
 18.
Q. Hu and J. Zou, Two new variants of nonlinear inexact Uzawa algorithms for saddlepoint problems, Numer. Math., 93 (2002), 333359.
 19.
Q. Hu and J. Zou, Substructuring preconditioners for saddlepoint problems arising from Maxwell's equations in three dimensions. Technical Report CUHK 200216(256), Department of Mathematics, The Chinese University of Hong Kong, 2002.
 20.
Q. Hu and J. Zou, A nonoverlapping domain decomposition method for Maxwell's equations in three dimensions. Accepted for publication in SIAM J. Numer. Anal.
 21.
Peter
Monk, Analysis of a finite element method for Maxwell’s
equations, SIAM J. Numer. Anal. 29 (1992),
no. 3, 714–729. MR 1163353
(93k:65096), http://dx.doi.org/10.1137/0729045
 22.
J.C.
Nédélec, Mixed finite elements in
𝑅³, Numer. Math. 35 (1980), no. 3,
315–341. MR
592160 (81k:65125), http://dx.doi.org/10.1007/BF01396415
 23.
R.
A. Nicolaides and DQ.
Wang, Convergence analysis of a covolume
scheme for Maxwell’s equations in three dimensions, Math. Comp. 67 (1998), no. 223, 947–963. MR 1474654
(98j:65080), http://dx.doi.org/10.1090/S0025571898009715
 24.
Torgeir
Rusten and Ragnar
Winther, A preconditioned iterative method for saddlepoint
problems, SIAM J. Matrix Anal. Appl. 13 (1992),
no. 3, 887–904. Iterative methods in numerical linear algebra
(Copper Mountain, CO, 1990). MR 1168084
(93a:65043), http://dx.doi.org/10.1137/0613054
 25.
Jukka
Saranen, On electric and magnetic problems for vector fields in
anisotropic nonhomogeneous media, J. Math. Anal. Appl.
91 (1983), no. 1, 254–275. MR 688544
(85i:78004), http://dx.doi.org/10.1016/0022247X(83)90104X
 26.
Barry
F. Smith, A domain decomposition algorithm for elliptic problems in
three dimensions, Numer. Math. 60 (1991), no. 2,
219–234. MR 1133580
(92m:65159), http://dx.doi.org/10.1007/BF01385722
 27.
Barry
F. Smith, Petter
E. Bjørstad, and William
D. Gropp, Domain decomposition, Cambridge University Press,
Cambridge, 1996. Parallel multilevel methods for elliptic partial
differential equations. MR 1410757
(98g:65003)
 28.
P. Tallec, Domain Decomposition Methods in Computational Mechanics, Comput. Mech. Adv., 2: 1321220, 1994.
 29.
Andrea
Toselli, Overlapping Schwarz methods for Maxwell’s equations
in three dimensions, Numer. Math. 86 (2000),
no. 4, 733–752. MR 1794350
(2001h:65137), http://dx.doi.org/10.1007/PL00005417
 30.
Andrea
Toselli, Olof
B. Widlund, and Barbara
I. Wohlmuth, An iterative substructuring method for
Maxwell’s equations in two dimensions, Math. Comp. 70 (2001), no. 235, 935–949. MR 1710632
(2001j:65140), http://dx.doi.org/10.1090/S0025571800012448
 31.
Jinchao
Xu, Iterative methods by space decomposition and subspace
correction, SIAM Rev. 34 (1992), no. 4,
581–613. MR 1193013
(93k:65029), http://dx.doi.org/10.1137/1034116
 32.
Jinchao
Xu and Jun
Zou, Some nonoverlapping domain decomposition methods, SIAM
Rev. 40 (1998), no. 4, 857–914. MR 1659681
(99m:65241), http://dx.doi.org/10.1137/S0036144596306800
 1.
 A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of curl; and the construction of an extension operator, Manuscr. Math., 89(1986), 159178. MR 96k:46057
 2.
 A. Alonso and A. Valli, An optimal domain decomposition preconditioner for lowfrequency timeharmonic Maxwell equations, Math. Comp., 68(1999), 607631. MR 99i:78002
 3.
 C. Amrouche, C. Bernardi, M. Dauge and V. Girault.
Vector Potentials in three dimensional nonsmooth domains, Math. Meth. Appl. Sci., 21(1998), 823864. MR 99e:35037
 4.
 J. Bramble, J. Pasciak and A. Schatz, The construction of preconditioner for elliptic problems by substructuring, IV. Math. Comp., 53(1989), 124. MR 89m:65098
 5.
 J. Bramble, J. Pasciak and A. Vassilev, Analysis of the inexact Uzawa algorithm for saddlepoint problems, SIAM J. Numer. Anal., 34(1997), 10721092. MR 98c:65182
 6.
 J. Bramble and J. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp., 50(1988), 118. MR 89m:65097a
 7.
 M. Cessenat, Mathematical methods in electromagnetism, World Scientific, River Edge, NJ, 1998. MR 97j:78001
 8.
 Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients, SIAM J. Numer. Anal., 37(1999), 15421570. MR 2001h:78044
 9.
 P. Ciarlet, Jr. and J. Zou, Fully discrete finite element approaches for timedependent Maxwell's equations, Numer. Math., 82(1999), 193219 MR 2000c:65083
 10.
 M. Costabel, A remark on the regularity of solution of Maxwell's equations on Lipschitz domains, Math. Meth. Appl. Sci. 12 (1990), 365368. MR 91c:35028
 11.
 R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for science and technology, SpringerVerlag, New York, 1988. MR 89m:00001
 12.
 V. Girault and P. Raviart, Finite Element Methods for NavierStokes Equations, SpringerVerlag, Berlin, 1986. MR 88b:65129
 13.
 J. Gopalakrishnan and J. Pasciak, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell's equations, Math. Comp., 72 (2003), 116.
 14.
 R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36(1998), 204225. MR 99j:65229
 15.
 Q. Hu and G. Liang, A general framework to construct interface preconditioners, Chinese J. Num. Math. & Appl., 21(1999), 8395. MR 99m:65238
 16.
 Q. Hu, G. Liang and J. Lui, Construction of a preconditioner for three dimensional domain decomposition methods with Lagrangian multipliers, J. Comput. Math., 19 (2001), 213224. MR 2001k:65186
 17.
 Q. Hu and J. Zou, An iterative method with variable parameters for saddlepoint problems, SIAM J. Matrix Anal. Appl., 23(2001), 317338. MR 2002j:65041
 18.
 Q. Hu and J. Zou, Two new variants of nonlinear inexact Uzawa algorithms for saddlepoint problems, Numer. Math., 93 (2002), 333359.
 19.
 Q. Hu and J. Zou, Substructuring preconditioners for saddlepoint problems arising from Maxwell's equations in three dimensions. Technical Report CUHK 200216(256), Department of Mathematics, The Chinese University of Hong Kong, 2002.
 20.
 Q. Hu and J. Zou, A nonoverlapping domain decomposition method for Maxwell's equations in three dimensions. Accepted for publication in SIAM J. Numer. Anal.
 21.
 P. Monk, Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal., 29(1992), 3256. MR 93k:65096
 22.
 J. Nédélec, Mixed finite elements in , Numer. Math., 35(1980), 315341. MR 81k:65125
 23.
 R. Nicolaides and D. Wang, Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions, Math. Comp., 67(1998), 947963. MR 98j:65080
 24.
 T. Rusten and R. Winther, A preconditioned iterative method for saddlepoint problems, SIAM J. Matrix Anal. Appl., 13(1992), 887904. MR 93a:65043
 25.
 J. Saranen, On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media, J. Math. Anal. Appl. 91(1983), 254275. MR 85i:78004
 26.
 B. Smith, A domain decomposition algorithm for elliptic problems in three dimensions, Numer. Math., 60(1991), 219234. MR 92m:65159
 27.
 B. Smith, P. Bjorstad and W. Gropp, Domain Decomposition: Parallel multilevel methods for elliptic partial differential equations, Cambridge University Press, 1996. MR 98g:65003
 28.
 P. Tallec, Domain Decomposition Methods in Computational Mechanics, Comput. Mech. Adv., 2: 1321220, 1994.
 29.
 A. Toselli, Overlapping Schwarz methods for Maxwell's equations in three dimensions, Numer. Math., 86(2000), 733752. MR 2001h:65137
 30.
 A. Toselli, O. Widlund and B. Wohlmuth, An iterative substructuring method for Maxwell's equations in two dimensions, Math. Comp. 70 (2001), 935947. MR 2001j:65140
 31.
 J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review, 34(1992), 581613. MR 93k:65029
 32.
 J. Xu and J. Zou, Some nonoverlapping domain decomposition methods, SIAM Review, 24(1998), 857914. MR 99m:65241
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
65N30,
65N55
Retrieve articles in all journals
with MSC (2000):
65N30,
65N55
Additional Information
Qiya Hu
Affiliation:
Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China
Email:
hqy@lsec.cc.ac.cn
Jun Zou
Affiliation:
Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email:
zou@math.cuhk.edu.hk
DOI:
http://dx.doi.org/10.1090/S0025571803015412
PII:
S 00255718(03)015412
Keywords:
Maxwell's equations,
N\'ed\'elec finite elements,
nonoverlapping domain decomposition,
condition numbers
Received by editor(s):
February 21, 2002
Received by editor(s) in revised form:
July 15, 2002
Published electronically:
August 19, 2003
Additional Notes:
The work of the first author was supported by Special Funds for Major State Basic Research Projects of China G1999032804.
The work of the second author was partially supported by Hong Kong RGC Grants CUHK4048/02P and CUHK4292/00P
Article copyright:
© Copyright 2003
American Mathematical Society
