Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

High rank elliptic curves with torsion group $\mathbb{Z} /(2\mathbb{Z} )$


Authors: Julián Aguirre, Fernando Castañeda and Juan Carlos Peral
Journal: Math. Comp. 73 (2004), 323-331
MSC (2000): Primary 11Y50
DOI: https://doi.org/10.1090/S0025-5718-03-01547-3
Published electronically: May 30, 2003
MathSciNet review: 2034125
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop an algorithm for bounding the rank of elliptic curves in the family $y^2=x^3-B\,x$, all of them with torsion group $\mathbb{Z} /(2\,\mathbb{Z} )$and modular invariant $j=1728$. We use it to look for curves of high rank in this family and present four such curves of rank $13$ and $22$ of rank $12$.


References [Enhancements On Off] (What's this?)

  • 1. Aguirre, J., Castañeda, F. and Peral, J.C., High rank elliptic curves of the form $y^2=x^3+B\,x$, Revista. Mat. Compl., XIII, num. 1, (2000), 1-15. MR 2001i:11065
  • 2. Cremona, J.E., Algorithms for Modular Elliptic Curves, Cambridge U. Press, Cambridge, (1992). MR 93m:11053
  • 3. Fermigier, S., Exemples de courbes elliptiques de grand rang sur $\mathbb{Q} (t)$ et sur $\mathbb{Q} $ possedant des points d'ordre $2$, C. R. Acad. Sci. Paris Ser. I Math., 322 (1996), 949-952. MR 97b:11073
  • 4. Fermigier, S., Construction of high-rank elliptic curves over $\mathbb{Q} $ and $\mathbb{Q} (t)$ with nontrivial 2-torsion (extended abstract), in Algorithmic Number Theory (Talence, 1996), Springer, Berlin, (1996). MR 97m:11071
  • 5. Fermigier, S., Une courbe elliptique definie sur $\mathbb{Q} $ de rang $\ge22$, Acta Arith., 82 (1997), 359-363. MR 98j:11041
  • 6. Nagao, K., On the rank of the elliptic curves $y^2=x^3-k\,x$, Kobe J. Math., 11 (1994), 205-210. MR 96c:11060
  • 7. Rogers, N.F., Rank Computations for the congruent number elliptic curves, Experimental Mathematics, 9 (2000), 591-594. MR 2001k:11104
  • 8. Shioda, T., Construction of elliptic curves with high rank via the invariants of the Weyl groups, J. Math. Soc. Japan, 43 (1991), 673-719. MR 92i:11059
  • 9. Shioda, T. and Usui, H., Fundamental invariants of Weyl groups and excellent families of elliptic curves, Comment. Math. Univ. St. Paul, 41 (1992), 169-217. MR 93m:11047
  • 10. Silverman, J.H. and Tate, J., ``Rational points on elliptic curves'', UTM, Springer-Verlag, Berlin, 1992. MR 93g:11003
  • 11. Tate, J., ``Rational points on elliptic curves'', Phillips Lectures, Haverford College, 1961.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11Y50

Retrieve articles in all journals with MSC (2000): 11Y50


Additional Information

Julián Aguirre
Affiliation: Departamento de Matemáticas, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
Email: mtpagesj@lg.ehu.es

Fernando Castañeda
Affiliation: Departamento de Matemáticas, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
Email: mtpcabrf@lg.ehu.es

Juan Carlos Peral
Affiliation: Departamento de Matemáticas, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
Email: mtppealj@lg.ehu.es

DOI: https://doi.org/10.1090/S0025-5718-03-01547-3
Received by editor(s): November 28, 2000
Received by editor(s) in revised form: July 5, 2002
Published electronically: May 30, 2003
Additional Notes: The second and third authors were supported by a grant from the University of the Basque Country.
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society