Class numbers of imaginary quadratic fields

Author:
Mark Watkins

Journal:
Math. Comp. **73** (2004), 907-938

MSC (2000):
Primary 11R29; Secondary 11M06, 11Y35

DOI:
https://doi.org/10.1090/S0025-5718-03-01517-5

Published electronically:
October 2, 2003

MathSciNet review:
2031415

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The classical class number problem of Gauss asks for a classification of all imaginary quadratic fields with a given class number . The first complete results were for by Heegner, Baker, and Stark. After the work of Goldfeld and Gross-Zagier, the task was a finite decision problem for any . Indeed, after Oesterlé handled , in 1985 Serre wrote, ``No doubt the same method will work for other small class numbers, up to 100, say.'' However, more than ten years later, after doing , Wagner remarked that the case seemed impregnable. We complete the classification for all , an improvement of four powers of 2 (arguably the most difficult case) over the previous best results. The main theoretical technique is a modification of the Goldfeld-Oesterlé work, which used an elliptic curve -function with an order 3 zero at the central critical point, to instead consider Dirichlet -functions with low-height zeros near the real line (though the former is still required in our proof). This is numerically much superior to the previous method, which relied on work of Montgomery-Weinberger. Our method is still quite computer-intensive, but we are able to keep the time needed for the computation down to about seven months. In all cases, we find that there is no abnormally large ``exceptional modulus'' of small class number, which agrees with the prediction of the Generalised Riemann Hypothesis.

**[1]**M. Abramowitz, I. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables.*National Bureau of Standards Applied Mathematics, 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964 MR**29:4914**(later ed.) [MR number corrected here after original posting; the PDF of the published article was not corrected.]**[2]**S. Arno,*The imaginary quadratic fields of class number 4.*Acta Arith.**60**(1992), pp. 321-334. MR**93b:11144****[3]**S. Arno, M. Robinson, F. Wheeler,*Imaginary quadratic fields with small odd class number.*Acta Arith.**83**(1998), pp. 295-330. MR**99a:11123****[4]**A. Baker,*Linear forms in the logarithms of algebraic numbers I, II, III.*Mathematika**13**(1966), pp. 204-216; ibid.**14**(1967), pp. 102-107; ibid.**14**(1967) pp. 220-228. MR**36:3732****[5]**A. Baker,*Imaginary quadratic fields with class number 2.*Ann. of Math. (2)**94**(1971), pp. 139-152. MR**45:8631****[6]**A. Baker, H. Stark,*On a fundamental inequality in number theory.*Ann. of Math. (2)**94**(1971), pp. 190-199. MR**46:1716****[7]**P. Bateman, E. Grosswald,*On Epstein's zeta function.*Acta Arith.**9**(1964), pp. 365-373. MR**31:3392****[8]**D. Buell,*Binary quadratic forms. Classical theory and modern computations.*Springer-Verlag, New York, 1989. MR**99b:11021****[9]**D. Buell,*The last exhaustive computation of class groups of complex quadratic number fields.*Number Theory (Ottawa, ON, 1996), pp. 35-53. CRM Proc. Lecture Notes, 19. Amer. Math. Soc., Providence, RI, 1999. MR**2000d:11156****[10]**C. Gauss,*Disquisitiones Arithmeticae*(Latin). English translation by A. Clarke, revised by W. Waterhouse, 1986 Springer-Verlag reprint of the Yale University Press, New Haven, 1966 edition. MR**33:5545**; MR**87f:01105****[11]**D. Goldfeld,*The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer.*Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**3**(1976), pp. 624-663. MR**56:8529****[12]**D. Goldfeld,*Gauss' class number problems for imaginary quadratic fields.*Bull. Amer. Math. Soc.**13**(1985), pp. 23-37. MR**86k:11065****[13]**B. Gross, D. Zagier,*Heegner points and derivatives of**-series.*Invent. Math.**84**(1986), pp. 225-320. MR**87j:11057****[14]**K. Heegner,*Diophantische Analysis und Modulfunktionen*(German). Math. Z.**56**(1952), pp. 227-253. MR**14:725j****[15]**H. Heilbronn, E. Linfoot,*On the imaginary quadratic corpora of class-number one.*Quart. J. Math. Oxford Ser.**5**(1934), pp. 293-301.**[16]**A. Ingham,*The Distribution of Prime Numbers.*Cambridge Tract 30, Cambridge University Press, 1990. MR**91f:11064****[17]**E. Landau,*Bemerkungen zum Heilbronnschen Satz*(German). Acta Arith.**1**(1935), pp. 1-18.**[19]**S. Lang,*Real and functional analysis.*Third edition. Graduate Texts in Mathematics, 142. Springer-Verlag, New York, 1993. MR**94b:00005****[18]**S. Lang,*Complex Analysis.*Fourth edition. Graduate Texts in Mathematics, 103. Springer-Verlag, New York, 1999. MR**99i:30001****[20]**F. Lemmermeyer, S. Louboutin, R. Okazaki,*The class number one problem for some nonabelian normal CM-fields of degree 24.*J. Théor. Nombres Bordeaux**11**(1999), pp. 387-406. MR**2001j:11104****[21]**J. Littlewood,*On the class number of the corpus*. Proc. London Math. Soc.**27**(1928), pp. 358-372.**[22]**S. Louboutin,*The nonquadratic imaginary cyclic fields of 2-power degrees with class number equal to their genus class numbers.*Proc. Amer. Math. Soc.**127**(1999), pp. 355-361. MR**99c:11134****[23]**S. Louboutin,*The class number one problems for the dihedral and dicyclic CM-fields.*Colloq. Math.**80**(1999), pp. 259-265. MR**2000e:11140****[24]**S. Louboutin, R. Okazaki,*Determination of all nonnormal quartic CM-fields and of all non abelian normal octic fields with class number one.*Acta Arith.**67**(1994), pp. 47-62. MR**95g:11107****[25]**S. Louboutin, R. Okazaki,*Determination of all quarternion CM-fields with ideal class group of exponent 2.*Osaka J. Math.**36**(1999), pp. 229-257. MR**2001c:11120****[26]**S. Louboutin, Y.-H. Park,*Class number problems for dicyclic CM-fields.*Publ. Math. Debrecen**57**(2000), pp. 283-295. MR**2001m:11196****[27]**R. Lukes, C. Patterson, H. Williams,*Numerical sieving devices: their history and some applications.*Nieuw Arch. Wisk, (4)**13**(1995), pp. 113-139. MR**96m:11082****[28]**I. Miyada,*On imaginary abelian number fields of type**with one class in each genus.*Manuscripta Math.**88**(1995), pp. 535-540. MR**96j:11146****[29]**H. Montgomery, P. Weinberger,*Notes on small class numbers.*Acta Arith.**24**(1973), pp. 529-542. MR**50:9841****[30]**J. Oesterlé,*Nombres de classes des corps quadratiques imaginaries*(French). Séminaire Bourbaki, Vol. 1983/84. Astérisque No. 121-122 (1985), pp. 309-323. MR**86k:11064****[31]**J. Oesterlé,*Le probléme de Gauss sur le nombre de classes.*(French). Enseign. Math**34**(1988), pp. 43-67. MR**89j:11108****[32]**R. Paley,*A theorem on characters.*J. London Math. Soc.**7**(1932), pp. 28-32.**[33]**PARI-GP. By C. Batut, D. Bernardi, H. Cohen, and M. Olivier. Currently maintained by K. Belabas at the Université Paris-Sud Orsay.`http://www.parigp-home.de`**[34]**A. Selberg, S. Chowla,*On Epstein's zeta-function.*J. Reine Angew. Math.**227**(1967), pp. 86-110. MR**35:6632****[35]**J.-P. Serre, . Math. Medley**13**(1985), pp. 1-10. MR**87g:11148****[36]**B. Setzer,*The determination of all imaginary, quartic, abelian number fields with class number 1.*Math. Comp.**35**(1980), pp. 1383-1386. MR**81k:12005****[37]**C. Siegel,*Über die Klassenzahl quadratischer Zahlkörper*(German). Acta Arith.**1**(1935), pp. 83-86.**[38]**H. Stark,*On complex quadratic fields with class number equal to one.*Trans. Amer. Math. Soc.**122**(1966), pp. 112-119. MR**33:4043****[39]**H. Stark,*A complete determination of the complex quadratic fields of class-number one.*Michigan Math. J.**14**(1967), pp. 1-27. MR**36:5102****[40]**H. Stark,*-functions and character sums for quadratic forms I, II.*Acta. Arith**14**(1967/68), pp. 35-50; ibid.**15**(1968/69), pp. 307-317. MR**37:2707**; MR**39:4101****[41]**H. Stark,*On the ``gap'' in a theorem of Heegner.*J. Number Theory**1**(1969), pp. 16-27. MR**39:2724****[42]**H. Stark,*A transcendence theorem for class-number problems I, II.*Ann. of Math. (2)**94**(1971), pp. 153-173; ibid.**96**(1972), pp. 174-209. MR**45:6767**; MR**46:8983****[43]**T. Tatuzawa,*On a theorem of Siegel.*Jap. J. Math**21**(1951), pp. 93-111 (1952). MR**14:452c****[44]**C. Wagner,*Class number 5, 6 and 7.*Math. Comp.**65**(1996), pp. 785-800. MR**96g:11135****[45]**M. Watkins,*Real zeros of real odd Dirichlet**-functions.*Math. Comp.,**73**(2004), pp. 415-423.**[46]**G. Watson,*A treatise on the theory of Bessel functions.*Cambridge Univ. Press, 1922. MR**6:64a**(2nd ed.)**[47]**P. Weinberger,*On small zeros of Dirichlet**-functions.*Math. Comp.**29**(1975), pp. 319-328. MR**51:12739****[48]**K. Yamamura,*The determination of the imaginary abelian number fields with class number one.*Math. Comp.**62**(1994), pp. 899-921. MR**94g:11096****[49]**K. Yamamura,*Determination of the imaginary normal octic number fields with class number one which are not CM-fields.*Acta Arith.**86**(1998), pp. 133-147. MR**99h:11127**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11R29,
11M06,
11Y35

Retrieve articles in all journals with MSC (2000): 11R29, 11M06, 11Y35

Additional Information

**Mark Watkins**

Affiliation:
Department of Mathematics, McAllister Building, The Pennsylvania State University, University Park, Pennsylvania 16802

Email:
watkins@math.psu.edu

DOI:
https://doi.org/10.1090/S0025-5718-03-01517-5

Received by editor(s):
February 27, 2002

Published electronically:
October 2, 2003

Article copyright:
© Copyright 2003
American Mathematical Society