Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Class numbers of imaginary quadratic fields


Author: Mark Watkins
Journal: Math. Comp. 73 (2004), 907-938
MSC (2000): Primary 11R29; Secondary 11M06, 11Y35
DOI: https://doi.org/10.1090/S0025-5718-03-01517-5
Published electronically: October 2, 2003
MathSciNet review: 2031415
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The classical class number problem of Gauss asks for a classification of all imaginary quadratic fields with a given class number $N$. The first complete results were for $N=1$ by Heegner, Baker, and Stark. After the work of Goldfeld and Gross-Zagier, the task was a finite decision problem for any $N$. Indeed, after Oesterlé handled $N=3$, in 1985 Serre wrote, ``No doubt the same method will work for other small class numbers, up to 100, say.'' However, more than ten years later, after doing $N=5,6,7$, Wagner remarked that the $N=8$ case seemed impregnable. We complete the classification for all $N\le 100$, an improvement of four powers of 2 (arguably the most difficult case) over the previous best results. The main theoretical technique is a modification of the Goldfeld-Oesterlé work, which used an elliptic curve $L$-function with an order 3 zero at the central critical point, to instead consider Dirichlet $L$-functions with low-height zeros near the real line (though the former is still required in our proof). This is numerically much superior to the previous method, which relied on work of Montgomery-Weinberger. Our method is still quite computer-intensive, but we are able to keep the time needed for the computation down to about seven months. In all cases, we find that there is no abnormally large ``exceptional modulus'' of small class number, which agrees with the prediction of the Generalised Riemann Hypothesis.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics, 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964 MR 29:4914 (later ed.) [MR number corrected here after original posting; the PDF of the published article was not corrected.]
  • [2] S. Arno, The imaginary quadratic fields of class number 4. Acta Arith. 60 (1992), pp. 321-334. MR 93b:11144
  • [3] S. Arno, M. Robinson, F. Wheeler, Imaginary quadratic fields with small odd class number. Acta Arith. 83 (1998), pp. 295-330. MR 99a:11123
  • [4] A. Baker, Linear forms in the logarithms of algebraic numbers I, II, III. Mathematika 13 (1966), pp. 204-216; ibid. 14 (1967), pp. 102-107; ibid. 14 (1967) pp. 220-228. MR 36:3732
  • [5] A. Baker, Imaginary quadratic fields with class number 2. Ann. of Math. (2) 94 (1971), pp. 139-152. MR 45:8631
  • [6] A. Baker, H. Stark, On a fundamental inequality in number theory. Ann. of Math. (2) 94 (1971), pp. 190-199. MR 46:1716
  • [7] P. Bateman, E. Grosswald, On Epstein's zeta function. Acta Arith. 9 (1964), pp. 365-373. MR 31:3392
  • [8] D. Buell, Binary quadratic forms. Classical theory and modern computations. Springer-Verlag, New York, 1989. MR 99b:11021
  • [9] D. Buell, The last exhaustive computation of class groups of complex quadratic number fields. Number Theory (Ottawa, ON, 1996), pp. 35-53. CRM Proc. Lecture Notes, 19. Amer. Math. Soc., Providence, RI, 1999. MR 2000d:11156
  • [10] C. Gauss, Disquisitiones Arithmeticae (Latin). English translation by A. Clarke, revised by W. Waterhouse, 1986 Springer-Verlag reprint of the Yale University Press, New Haven, 1966 edition. MR 33:5545; MR 87f:01105
  • [11] D. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), pp. 624-663. MR 56:8529
  • [12] D. Goldfeld, Gauss' class number problems for imaginary quadratic fields. Bull. Amer. Math. Soc. 13 (1985), pp. 23-37. MR 86k:11065
  • [13] B. Gross, D. Zagier, Heegner points and derivatives of $L$-series. Invent. Math. 84 (1986), pp. 225-320. MR 87j:11057
  • [14] K. Heegner, Diophantische Analysis und Modulfunktionen (German). Math. Z. 56 (1952), pp. 227-253. MR 14:725j
  • [15] H. Heilbronn, E. Linfoot, On the imaginary quadratic corpora of class-number one. Quart. J. Math. Oxford Ser. 5 (1934), pp. 293-301.
  • [16] A. Ingham, The Distribution of Prime Numbers. Cambridge Tract 30, Cambridge University Press, 1990. MR 91f:11064
  • [17] E. Landau, Bemerkungen zum Heilbronnschen Satz (German). Acta Arith. 1 (1935), pp. 1-18.
  • [19] S. Lang, Real and functional analysis. Third edition. Graduate Texts in Mathematics, 142. Springer-Verlag, New York, 1993. MR 94b:00005
  • [18] S. Lang, Complex Analysis. Fourth edition. Graduate Texts in Mathematics, 103. Springer-Verlag, New York, 1999. MR 99i:30001
  • [20] F. Lemmermeyer, S. Louboutin, R. Okazaki, The class number one problem for some nonabelian normal CM-fields of degree 24. J. Théor. Nombres Bordeaux 11 (1999), pp. 387-406. MR 2001j:11104
  • [21] J. Littlewood, On the class number of the corpus $P\bigl (\sqrt {-k}\bigr )$. Proc. London Math. Soc. 27 (1928), pp. 358-372.
  • [22] S. Louboutin, The nonquadratic imaginary cyclic fields of 2-power degrees with class number equal to their genus class numbers. Proc. Amer. Math. Soc. 127 (1999), pp. 355-361. MR 99c:11134
  • [23] S. Louboutin, The class number one problems for the dihedral and dicyclic CM-fields. Colloq. Math. 80 (1999), pp. 259-265. MR 2000e:11140
  • [24] S. Louboutin, R. Okazaki, Determination of all nonnormal quartic CM-fields and of all non abelian normal octic fields with class number one. Acta Arith. 67 (1994), pp. 47-62. MR 95g:11107
  • [25] S. Louboutin, R. Okazaki, Determination of all quarternion CM-fields with ideal class group of exponent 2. Osaka J. Math. 36 (1999), pp. 229-257. MR 2001c:11120
  • [26] S. Louboutin, Y.-H. Park, Class number problems for dicyclic CM-fields. Publ. Math. Debrecen 57 (2000), pp. 283-295. MR 2001m:11196
  • [27] R. Lukes, C. Patterson, H. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk, (4) 13 (1995), pp. 113-139. MR 96m:11082
  • [28] I. Miyada, On imaginary abelian number fields of type $(2,2,\cdots , 2)$with one class in each genus. Manuscripta Math. 88 (1995), pp. 535-540. MR 96j:11146
  • [29] H. Montgomery, P. Weinberger, Notes on small class numbers. Acta Arith. 24 (1973), pp. 529-542. MR 50:9841
  • [30] J. Oesterlé, Nombres de classes des corps quadratiques imaginaries (French). Séminaire Bourbaki, Vol. 1983/84. Astérisque No. 121-122 (1985), pp. 309-323. MR 86k:11064
  • [31] J. Oesterlé, Le probléme de Gauss sur le nombre de classes. (French). Enseign. Math 34 (1988), pp. 43-67. MR 89j:11108
  • [32] R. Paley, A theorem on characters. J. London Math. Soc. 7 (1932), pp. 28-32.
  • [33] PARI-GP. By C. Batut, D. Bernardi, H. Cohen, and M. Olivier. Currently maintained by K. Belabas at the Université Paris-Sud Orsay. http://www.parigp-home.de
  • [34] A. Selberg, S. Chowla, On Epstein's zeta-function. J. Reine Angew. Math. 227 (1967), pp. 86-110. MR 35:6632
  • [35] J.-P. Serre, $\Delta =b^{2}-4ac$. Math. Medley 13 (1985), pp. 1-10. MR 87g:11148
  • [36] B. Setzer, The determination of all imaginary, quartic, abelian number fields with class number 1. Math. Comp. 35 (1980), pp. 1383-1386. MR 81k:12005
  • [37] C. Siegel, Über die Klassenzahl quadratischer Zahlkörper (German). Acta Arith. 1 (1935), pp. 83-86.
  • [38] H. Stark, On complex quadratic fields with class number equal to one. Trans. Amer. Math. Soc. 122 (1966), pp. 112-119. MR 33:4043
  • [39] H. Stark, A complete determination of the complex quadratic fields of class-number one. Michigan Math. J. 14 (1967), pp. 1-27. MR 36:5102
  • [40] H. Stark, $L$-functions and character sums for quadratic forms I, II. Acta. Arith 14 (1967/68), pp. 35-50; ibid. 15 (1968/69), pp. 307-317. MR 37:2707; MR 39:4101
  • [41] H. Stark, On the ``gap'' in a theorem of Heegner. J. Number Theory 1 (1969), pp. 16-27. MR 39:2724
  • [42] H. Stark, A transcendence theorem for class-number problems I, II. Ann. of Math. (2) 94 (1971), pp. 153-173; ibid. 96 (1972), pp. 174-209. MR 45:6767; MR 46:8983
  • [43] T. Tatuzawa, On a theorem of Siegel. Jap. J. Math 21 (1951), pp. 93-111 (1952). MR 14:452c
  • [44] C. Wagner, Class number 5, 6 and 7. Math. Comp. 65 (1996), pp. 785-800. MR 96g:11135
  • [45] M. Watkins, Real zeros of real odd Dirichlet $L$-functions. Math. Comp., 73 (2004), pp. 415-423.
  • [46] G. Watson, A treatise on the theory of Bessel functions. Cambridge Univ. Press, 1922. MR 6:64a (2nd ed.)
  • [47] P. Weinberger, On small zeros of Dirichlet $L$-functions. Math. Comp. 29 (1975), pp. 319-328. MR 51:12739
  • [48] K. Yamamura, The determination of the imaginary abelian number fields with class number one. Math. Comp. 62 (1994), pp. 899-921. MR 94g:11096
  • [49] K. Yamamura, Determination of the imaginary normal octic number fields with class number one which are not CM-fields. Acta Arith. 86 (1998), pp. 133-147. MR 99h:11127

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R29, 11M06, 11Y35

Retrieve articles in all journals with MSC (2000): 11R29, 11M06, 11Y35


Additional Information

Mark Watkins
Affiliation: Department of Mathematics, McAllister Building, The Pennsylvania State University, University Park, Pennsylvania 16802
Email: watkins@math.psu.edu

DOI: https://doi.org/10.1090/S0025-5718-03-01517-5
Received by editor(s): February 27, 2002
Published electronically: October 2, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society