
MATHEMATICS OF COMPUTATION
Volume 73, Number 246, Pages 899–906
S 0025-5718(03)01543-6
Article electronically published on May 7, 2003

NEW FRAMEWORKS
FOR MONTGOMERY’S MODULAR MULTIPLICATION

METHOD

PHILIP B. MCLAUGHLIN, JR.

Abstract. We present frameworks for fast modular multiplication based on
a modification of Montgomery’s original method. For (fixed) large integers,
our algorithms may be significantly faster than conventional methods. Our
techniques may also be extended to modular polynomial arithmetic.

1. Introduction

In [3], Montgomery shows how to compute modulo an integer N > 1 which
avoids division by N . He also gives a multiprecision algorithm which, for n-bit
integers, runs in O(n2) time. We offer here frameworks for Montgomery’s method
which are more suitable for large integers. Our techniques are especially suited for
use with Discrete Fourier Transform (DFT) methods for multiplication, since they
require no zero-padding, i.e., no computation of any double-length products using
2n-bit transforms.

Note: In this paper we use the notation a = b (mod c) to mean a ≡ b (mod c)
and 0 ≤ a < c.

2. Review and extension of the method

Review. We paraphrase Montgomery’s main results from [3], while recasting his
algorithm as a complete modular multiplication (as opposed to reduction) method:

Given N > 1, choose R > N with gcd(R,N) = 1. Find integers R−1 and N ′

such that 0 < R−1 < N , 0 < N ′ < R, and RR−1 −NN ′ = 1. Let ZN denote the
usual ring of integers modulo N , and let Z′N denote a second ring over the same
set with addition unchanged but multiplication defined by a∗b = abR−1 (mod N).
Define f : ZN → Z′N by f(x) = xR (mod N). It is easy to check that f is a ring
isomorphism. Montgomery proved that a∗b can be computed as follows:

Function REDC(a, b). (Given a, b ∈ Z′N , returns a∗b.)
(0) T = ab.
(1) m = (T (mod R))N ′ (mod R).
(2) t = (T +mN)/R.
(3) If t < N , then return t, else return t−N .

It is easy to modify algorithms involving ZN to use Z′N . See [3] for other details.

Received by the editor May 5, 2000 and, in revised form, July 2, 2002.
2000 Mathematics Subject Classification. Primary 11-04, 11Y16; Secondary 11A07, 11T55.
Key words and phrases. Modular arithmetic, multiplication, factorization, primality testing,

polynomial arithmetic, public-key cryptography.

c©2003 American Mathematical Society

899



900 P. B. MCLAUGHLIN, JR.

Extension. Observe that t in REDC satisfies the constraint

t ≤ ((N − 1)2 + (R− 1)N)/R = N + (N2 − 3N + 1)/R.

Choose an integer Q which satisfies

(2.1) N + (N2 − 3N + 1)/R < Q/ gcd(Q,R).

We can now eliminate step (0) and replace steps (1) and (2) of REDC with
(1′) m = abN ′ (mod R).
(2′) t = ((ab +mN)/R) (mod (Q/ gcd(Q,R))).

In the next section we discuss particular choices for Q and R which will allow us
to compute both m and t efficiently.

3. Computational frameworks

Variation 1. Let R = 2gk − 1 and Q = 2Q′, where Q′ = 2g(k+1) − 1, g is a
small constant (whose choice is discussed below), and k is sufficiently large to force
R > N . In this case gcd(Q,R) = 2g − 1, Q′ − 2gR = 2g − 1, and Q′/(2g − 1) > R.
Check that gcd(R,N) = 1 and compute N ′. We can multiply in Z′N using:

Function ∗ operator v1(a, b). (Given a, b ∈ Z′N , returns a∗b.)
(1) m = abN ′ (mod R).
(2) S = (ab+mN) (mod Q′).
(3) s = −2gS (mod Q′).
(4) If (ab+mN) ≡ s (mod 2), then t = s/(2g − 1),

else t = (s+Q′)/(2g − 1).
(5) If t < N , then return t, else return t−N .

Proof. Q satisfies (2.1) since 2Q′/(2g − 1) > 2R > 2N > (N + (N2 − 3N + 1)/R).
Now Rt = (ab + mN), so Rt (mod Q′) = S. Then −2gRt ≡ −2gS (mod Q′) = s.
But−2gR ≡ (2g−1) (mod Q′), so (2g−1)t (mod Q′) = s. By (2.1), (2g−1)t < 2Q′,
so (2g − 1)t = s or (2g − 1)t = s+Q′. Since Rt ≡ (2g − 1)t ≡ (ab+mN) (mod 2),
we must have (2g − 1)t = s when (ab+ mN) ≡ s (mod 2), and (2g − 1)t = s+Q′

otherwise. �
One approach to steps (1) and (2) of Variation 1 is modular multiplication based

on algebraic factorizations of R and Q′. For each step, we can compute (or, for N
and N ′, precompute) factor residues for each argument, multiply/add modulo the
relevant factors, and then reconstruct the result.

We can choose g so that one or more of the familiar identities

(x2 − 1) = (x+ 1)(x− 1), (x3 − 1) = (x − 1)(x2 + x+ 1),(3.1)
(x3 + 1) = (x+ 1)(x2 − x+ 1), (4x4 + 1) = (2x2 + 2x+ 1)(2x2 − 2x+ 1)(3.2)

apply to Q′ and R and, in turn, to their factors and subfactors. Also, either 2|k or
2|(k + 1), so one of the exponents will be a multiple of 2g and the other will be of
the form 2gk′ + g. For example, if we choose g = 4, we can use the identities

(x8 − 1) = (x4 + 1)(x2 + 1)(x+ 1)(x− 1),(3.3)
(16x8 − 1) = (2x2 + 2x+ 1)(2x2 − 2x+ 1)(2x2 + 1)(2x2 − 1)(3.4)

to factor R and Q′ (or vice versa.) If we choose g = 6, we can use

(x12 − 1) = (x2 + 1)(x4 − x2 + 1)(x± 1)(x2 ± x+ 1),(3.5)
(64x12 − 1) = (2x2 + 1)(4x4 − 2x2 + 1)(2x2 − 1)(4x4 + 2x2 + 1).(3.6)



NEW MONTGOMERY MULTIPLICATION FRAMEWORKS 901

The referee notes the factorization

(3.7) (64x12 + 1) = (2x2 ± 2x+ 1)((4x4 + 2x2 + 1)± (4x3 + 2x))

which follows from the two identities (3.2) above. If we set g = 12, we can use

(x24 − 1) = (x4 + 1)(x8 − x4 + 1)(factors of x12 − 1),(3.8)
(212x24 − 1) = (factors of 64x12 + 1)(factors of 64x12 − 1)(3.9)

to factor Q′ and R. Decomposition or reduction modulo the factors in these iden-
tities is well known to require only addition, subtraction, and shift operations.
Recovery of residues modulo R and Q′ is also straightforward; see Appendix C for
some applicable reconstruction formulas. We offer a simple numerical example of
Variation 1 in Appendix A.

Variation 2. Choose R = 2k − 1 > N and Q = 2Q′, where Q′ = 2k + 1. In this
case gcd(Q,R) = 1. Verify gcd(R,N) = 1 and find N ′. Multiply in Z′N using:

Function ∗ operator v2(a, b). (Given a, b ∈ Z′N , returns a∗b.)
(1) m = abN ′ (mod R).
(2) S = (ab+mN) (mod Q′).
(3) w = −S (mod Q′).
(4) If 2|w, then s = w/2, else s = (w +Q′)/2.
(5) If (ab+mN) ≡ s (mod 2), then t = s, else t = s+Q′.
(6) If t < N , then return t, else return t−N .

Proof. As above, Q satisfies (2.1) and Rt (mod Q′) = S. R ≡ −2 (mod Q′), so
2t ≡ −S (mod Q′) = w. Step (3) removes the 2, so t (mod Q′) = s. Since t < 2Q′,
either t = s or t = s + Q′. But Rt ≡ t ≡ (ab + mN) (mod 2), so t = s when
s ≡ (ab+mN) (mod 2); otherwise t = s+Q′. �

As before, we could apply the algebraic factorization method to compute m and
S. For example, choose k = 12k′ + 6 and use identities (3.6) and (3.7). But we
suggest a different approach to Variation 2 — Discrete Fourier Transforms (DFT’s).

Suppose a = a0 + a1B + · · ·+ aP−1B
P−1 and b = b0 + b1B + · · · + bP−1B

P−1,
with 0 ≤ ai, bi < B, 0 ≤ i ≤ P − 1. As discussed by Crandall and Fagin in [1], we
can compute ab (mod BP − 1) from the cyclic convolution (without zero-padding)
of the sequences {ai} and {bi}. Similarly, we can use the negacyclic convolution to
compute ab (mod BP + 1). But this is all that we need; compute m using cyclic
convolutions and S using negacyclic convolutions. Set k = k′P , where k′ and P are
chosen so that transforms are as fast as possible for a given size of N .

Note that we can compute m either sequentially or “all at once”. In the latter
option, we multiply the transforms of a, b, andN ′ together in one step. This requires
that we maintain enough precision to recover convolution sums of size P 2(B − 1)3,
rather than the usual P (B − 1)2. For the S computation, if we maintain one extra
bit of precision, we can recover sums of size 2P (B − 1)2. This allows us to add
the transform components of ab and mN prior to the final reverse transform. See
Appendix B for a numerical example of Variation 2.

A practical speedup. In many algorithms (such as computing bc (mod N)) a
given argument b may appear in more than one modular multiplication. In the
algebraic approach, we can compute the residues of bN ′ and b modulo the factors
of R and Q′, respectively, and save them for subsequent operations. Likewise, in



902 P. B. MCLAUGHLIN, JR.

the DFT approach, we can reuse the cyclic transform of bN ′ (mod R) and the
negacyclic transform of b.

The same idea extends to sums and differences of arguments. These occur, for
example, in Montgomery’s elliptic curve (ECM) factorization algorithm from [4].
Suppose that we know aN ′ (mod R) and bN ′ (mod R) (or their factor residues)
and we need to compute ((a ± b) (mod N))N ′ (mod R). When a < b, we can
use (a − b + N)N ′ ≡ (aN ′ − bN ′ − 1) (mod R). When a + b ≥ N , we can use
(a+ b−N)N ′ ≡ (aN ′ + bN ′ + 1) (mod R). Keep in mind when using DFT’s that
the underlying sums or differences are not carry-propagated, which will affect the
required precision and constraints.

4. Estimated running times

Algebraic approach. For either variation, it is easy to check that all of the over-
head required to compute m and S (obtaining factor residues, product reductions,
and reconstructions), as well as the final steps to recover t, is O(n), where n is the
number of bits in Q′. Let τ be the time required to compute a conventional O(n2)
n× n multiplication. Then the time for an n/2× n/2 multiplication is about τ/4,
for n/4 × n/4 about τ/16, etc. Similarly, let τ ′ be the time for an n × n Karat-
suba multiplication (an O(nlg 3) method; see Knuth [2], pp. 294-295). Then the
n/2× n/2 time is about τ ′/3, n/4× n/4 about τ ′/9, etc.

Suppose Q′ = x8 − 1 and we use (3.3) to factor it. Then one set of O(n2) factor
residue products will take about τ(1/4 + 1/16 + 2/64) = 11τ/32 ≈ 0.34τ . The
corresponding O(nlg 3) time is about τ ′(1/3 + 1/9 + 2/27) = 14τ ′/27 ≈ 0.52τ ′. We
computed similar estimates for identities (3.4) through (3.9); the results (normalized
using division by τ or τ ′) are summarized in Table 1.

Recall from §3 (Variation 1) that the identities (3.3) and (3.4) apply when g = 4,
(3.5) and (3.6) when g = 6, and (3.8) and (3.9) when g = 12. In each case, the
first identity will be used for R when k is even. For any pair of identities, we need
two sets of factor residue products each to compute m and S, unless an argument
is reused, which eliminates one set of products modulo R. Reusing an argument
will save the most time when the slower identity within each pair, namely (3.3),
(3.6), or (3.8), is used to compute modulo R. Thus we should choose k to be even
when g = 4 or g = 12 and odd when g = 6, unless doing so somehow imposes a
significant time penalty.

Estimated total multiplication times (again normalized) to compute a∗ b are
summarized in Table 2. When an argument is reused, the time (for optimal parity
of k in the Variation 1 cases) is shown in parentheses.

Note that the Variation 2 case has multiplication times only marginally faster
than the g = 4 case of Variation 1, but we included it for comparison. All of
the O(n2) cases compare favorably with the standard multiplication/long division
method, as well as Montgomery’s original algorithm, which requires about 2τ to
compute a∗b. The O(nlg 3) times all appear to be faster than a conventional three-
multiply approach. Of course in practice the overhead will be significant, and we
could use different multiplication methods for factors of different sizes. In fact, N
would have to be fairly large (perhaps several thousand bits) to apply the Karatsuba
method to all factor residue products. For such N the DFT approach may be faster.
Clearly, for any given machine, experiments will be needed to find optimal choices
for g, methods, etc., for N of various sizes.



NEW MONTGOMERY MULTIPLICATION FRAMEWORKS 903

Table 1. Approximate time to compute one set of products.

(3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9)
O(n2) 0.344 0.250 0.208 0.278 0.278 0.191 0.139
O(nlg 3) 0.519 0.444 0.390 0.467 0.467 0.364 0.312

Table 2. Approximate multiplication time required to compute a∗b.

V1, g = 4 V1, g = 6 V1, g = 12 V2, k = 12k′ + 6
O(n2) 1.188 (0.844) 0.972 (0.694) 0.660 (0.469) 1.111 (0.833)
O(nlg 3) 1.926 (1.407) 1.714 (1.247) 1.350 (0.987) 1.870 (1.402)

DFT approach. Suppose that the time required for an n×nmultiplication to form
a 2n-bit product using DFT’s is 3T , where T is the time required for one forward
(or reverse) transform, and overhead time is negligible. Such a calculation generally
requires zero-padding, so that the transform components can accommodate 2n bits.
Here we never need a 2n-bit product, only n-bit convolutions. In our case one
convolution should take about 1.5T . Our function requires four convolutions, but
the transforms of N and N ′ can be precomputed. And, as mentioned previously,
we can add the transform components of ab and mN prior to the final reverse
transform. So the total time required to compute a∗ b is about 4.5T (3.5T for
squares). When an argument is reused, the time drops to only 2.5T . In contrast, a
standard three-multiply approach to compute ab (mod N) using 2n-bit DFT’s will
require time of about 7T (6T for squares or when an argument is reused) since the
transforms of N and a scaled estimate of 1/N can be precomputed.

5. Modular multiplication of polynomials

The referee has observed that our methods may be extended to polynomial
arithmetic. Here we outline the algorithm analogous to Variation 2 in §3.

Suppose p(x) is a polynomial with deg(p(x)) ≤ h, over a field of odd charac-
teristic, where h has been chosen so that gcd(p(x), xh − 1) = 1 and arithmetic
modulo xh ± 1 is easy. Precompute p̃(x) such that p(x)p̃(x) ≡ 1 (mod xh − 1) and
deg(p̃(x)) < h. Given a(x) and b(x) with deg(a(x)) < deg(p(x)) and deg(b(x)) <
deg(p(x)), suppose we want

c(x) ≡ a(x)b(x)(xh − 1)−1 (mod p(x)), with deg(c(x)) < deg(p(x)).
We can compute

m(x) ≡ a(x)b(x)p̃(x) (mod xh − 1), with deg(m(x)) < h.
Follow this with

s(x) ≡ (m(x)p(x) − a(x)b(x)) (mod xh + 1), with deg(s(x)) < h.
Finally, c(x) = 2−1s(x).

Proof. Set S(x) = m(x)p(x)−a(x)b(x). Then S(x) ≡ s(x) (mod xh + 1), S(x) ≡ 0
(mod xh − 1), deg(S(x)) < deg(p(x)) + h, and S(x) ≡ −a(x)b(x) (mod p(x)). Set
S(x) = (xh−1)t(x). Since t(x) ≡ −a(x)b(x)(xh−1)−1 (mod p(x)) and deg(t(x)) <
deg(p(x)), we have t(x) = −c(x). Thus (xh − 1)t(x) ≡ 2c(x) ≡ s(x) (mod xh + 1).
But deg(c(x)) < h and deg(s(x)) < h, so 2c(x) = s(x). �



904 P. B. MCLAUGHLIN, JR.

Nussbaumer ([5], Appendix B) has many sequences for multiplying two polyno-
mials modulo some fixed univariate or bivariate polynomial, especially when one of
the input polynomials will be reused.

Appendix A: A simple numerical example of Variation 1 using

algebraic factorization

Let N = 4000000003. Choose g = 4 and k = 8, so that R = 232 − 1. Compute
R−1 = 2767083981 and N ′ = 2971133798. Finally, Q′ = 236 − 1 and gcd(Q′, R) =
24 − 1. Factor R and Q′ using (3.3) and (3.4):

R = (216 + 1)(28 + 1)(24 + 1)(24 − 1) = r1 · r2 · r3 · r4,
Q′ = (29 + 25 + 1)(29 − 25 + 1)(29 + 1)(29 − 1) = q1 · q2 · q3 · q4.

Note that both R and Q′ have more algebraic factors, but the above is sufficient to
illustrate the method. Compute

N ′ mod r1 = 13903, N ′ mod r2 = 231, N ′ mod r3 = 6, N ′ mod r4 = 8,
N mod q1 = 298, N mod q2 = 155, N mod q3 = 493, N mod q4 = 335.

Now suppose that a = 3987997002 and b = 3796466986. Decomposing a and b
modulo the factors of R and Q′, we have

a mod r1 = 5015, a mod r2 = 16, a mod r3 = 16, a mod r4 = 12,
a mod q1 = 377, a mod q2 = 28, a mod q3 = 153, a mod q4 = 213,
b mod r1 = 39650, b mod r2 = 21, b mod r3 = 7, b mod r4 = 1,
b mod q1 = 256, b mod q2 = 364, b mod q3 = 226, b mod q4 = 151.

Multiplying and reducing modulo the factors of R, we get

abN ′ mod r1 =4671, abN ′ mod r2 =2, abN ′ mod r3 =9, abN ′ mod r4 =6.

Reconstructing modulo R, m = abN ′ (mod R) = 3527206011. Decomposing m
modulo the factors of Q′, we get

m mod q1 = 346, m mod q2 = 303, m mod q3 = 126, m mod q4 = 406.

Multiplying, summing terms, and reducing, we have

(ab+mN) mod q1 = 150, (ab+mN) mod q2 = 399,
(ab+mN) mod q3 = 252, (ab+mN) mod q4 = 54.

Reconstructing, S = 40860178875. Then s = −24S (mod Q′) = 33431905350.
Since (ab+mN) 6≡ s (mod 2), t = (s+Q′)/(24− 1) = 6810092139. Finally, t ≥ N ,
so a∗b = t−N = 2810092136. As a check, we computed abR−1 (mod N) directly
and obtained the same result.

Appendix B: A simple numerical example of Variation 2 using DFT’s

Suppose R = BP−1 andQ′ = BP+1, where B = 2u and P = 2v. We choose here
to use transforms over a ring ZM . To avoid overflow, we require M > 2P (B − 1)2.
(We include an extra factor of 2 so that we can add the transforms of ab and mN
before applying the final reverse transform to obtain (ab + mN) (mod Q′).) Let
M = 2cP +1, where c ≥ (v+2u+1)/P . Then A = 2c and ω = 22c will be primitive



NEW MONTGOMERY MULTIPLICATION FRAMEWORKS 905

P th roots of −1 and 1, respectively, in ZM . As shown in [1], for cyclic convolutions
the forward and reverse transforms are given by

Xn =
P−1∑
k=0

xkω
−kn (mod M), xn = P−1

P−1∑
k=0

Xkω
kn (mod M),

respectively, for 0 ≤ n ≤ P − 1. Also from [1], for negacyclic convolutions the
forward and reverse transforms are given by

X ′n =
P−1∑
k=0

xkA
kω−kn (mod M), xn = P−1A−n

P−1∑
k=0

X ′kω
kn (mod M),

respectively, for 0 ≤ n ≤ P − 1. Also, the result of the final reverse negacyclic
transform to obtain (ab+mN) (mod Q′) will be subject to the constraints

(B1) −2(P − 1− n)(B − 1)2 ≤ xn ≤ 2(n+ 1)(B − 1)2, 0 ≤ n ≤ P − 1.

Now suppose N = 3141592661. Then we can choose R = 232 − 1, Q′ = 232 + 1,
P = 22, and B = 28. We then have c ≥ (2 + 16 + 1)/4, so c = 5 and M = 220 + 1,
A = 25, and ω = 210. We find R−1 = 660970531 and N ′ = 903633004. Let T (x)
and T ′(x) denote the cyclic and negacyclic transforms, respectively, of an integer
x = x0 + x1B + x2B

2 + x3B
3, or x = (x0, x1, x2, x3) for short. Precompute

N = (85, 230, 64, 187), T ′(N) = (957712, 780541, 222107, 137134),
N ′ = (108, 88, 220, 53), T (N ′) = (469, 1012625, 187, 35728).

Now let a = 519910555 and b = 2438952723. First, compute m = abN ′ (mod R):
a = (155, 52, 253, 30),
b = (19, 119, 95, 145),
T (a) = (490, 1025951, 326, 22430),
T (b) = (378, 26548, 1048427, 1021877),
T (b) · T (N ′) = (177282, 799951, 1020527, 267470),
T−1(T (b) · T (N ′)) = (42019, 51459, 32597, 51207),
bN ′ (mod R) = (235, 167, 30, 135) (after carries mod R),
T (bN ′ (mod R)) = (567, 1016014, 1048540, 32973),
T (a) · T (bN ′ (mod R)) = (277830, 669384, 1036515, 337605),
T−1(T (a) · T (bN ′ (mod R))) = (56045, 73160, 76839, 71786),
m = abN ′ (mod R) = (6, 164, 69, 151) (after carries mod R).

Now compute (ab +mN) (mod Q′):
T ′(a) = (195354, 133341, 323100, 397402),
T ′(b) = (658159, 193015, 585016, 661040),
T ′(m) = (829570, 842028, 360331, 65249),
T ′(a) · T ′(b) = (627277, 539227, 82426, 719424),
T ′(m) · T ′(N) = (176749, 847895, 446469, 348825),
T ′(a) · T ′(b) + T ′(m) · T ′(N) = (804026, 338545, 528895, 19672),
(T ′)−1(T ′(a) · T ′(b) + T ′(m) · T ′(N)) = (−101504,−27349, 37102, 98415)

(after constraints (B1) applied),
S = (ab +mN) (mod Q′) = (0, 157, 129, 255) = 4286684416

(after carries mod Q′).
Next, compute t (mod Q′):

2t ≡ −S (mod Q′) = Q′ − 4286684416 = 8282881,
t (mod Q′) = (8282881 +Q′)/2 = 2151625089.



906 P. B. MCLAUGHLIN, JR.

Finally, (ab + mN) ≡ 1 (mod 2), so t = 2151625089. Since t < N , a∗b = t. As a
check, we computed a∗b = abR−1 (mod N) directly and obtained the same result.

Appendix C: Algebraic reconstruction formulas

The following formulas can be used to reconstruct P (mod p(x)) from P modulo
factors of p(x), where x = 2h. In each formula, m1 and m2 are given factors,
m1 > m2, P (mod m1) = A and P (mod m2) = B.

(x2− 1): m1,m2 = (x± 1). Compute C = (B−A) (mod m2) and r = C (mod 2).
Then P (mod (x2 − 1)) = A+m1((C +m2r)/2).

(x6 + 1): m1 = (x4− x2 + 1) and m2 = (x2 + 1). Compute C = (B−A) (mod m2)
and r = C (mod 3). Then P (mod (x6 + 1)) = A+m1((C +m2r)/3).

(4x4 + 1): m1 = (2x2 + 2x+ 1) and m2 = (2x2 − 2x+ 1). Find C0 and C1, where
(2xC1 +C0) = (A−B) (mod m2). Compute D = ((x− 1)C0−C1) (mod m2) and
r = D (mod 2). Then P (mod (4x4 + 1)) = A+m1((D +m2r)/2).

(16x8− 4x4 + 1): m1,m2 = ((4x4 + 2x2 + 1)± (4x3 + 2x)). Find C0 and C1, where
((4x3+2x)C1+C0) = (A−B) (mod m2). Compute D = ((x−1)C0−C1) (mod m2)
and r = D (mod 2). Then P (mod (16x8 − 4x4 + 1)) = A+m1((D +m2r)/2).

(8x6− 1): m1 = (4x4 + 2x2 + 1) and m2 = (2x2− 1). Find C = (B−A) (mod m2)
and r = 2C (mod 3). Then P (mod (8x6 − 1)) = A+m1((C +m2r)/3).

(8x6 + 1): m1 = (4x4 − 2x2 + 1) and m2 = (2x2 + 1). Here 3 ‖ m1 and 3k−1 ‖ m2

for some k ≥ 2. Since gcd(m1,m2) = 3, we need to know P (mod 3k) = C in
addition to A and B. We also need to precompute u = (m2/3k−1) (mod 3). Find
D = (B−A) (mod m2), E = (A+D) (mod 3k), and r = u((C−E)/3k−1) (mod 3).
Then P (mod (8x6 + 1)) = A+m1((D +m2r)/3).

Acknowledgment

The author would like to thank the referee for suggesting many valuable im-
provements to this paper.

References

1. Richard Crandall and Barry Fagin, Discrete weighted transforms and large-integer arithmetic,
Math. Comp. 62 (1994), 305-324. MR 94c:11123

2. Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms
(3rd ed.), Addison-Wesley, Boston, MA, 1998. MR 83i:68003

3. Peter L. Montgomery, Modular multiplication without trial division, Math. Comp. 44 (1985),
519-521. MR 86e:11121

4. Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math.
Comp. 48 (1987), 243-264. MR 88e:11130

5. H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, (2nd ed.), Springer-
Verlag, New York, 1982. MR 83e:65219

237 N. Harris Avenue, Tucson, Arizona 85716

E-mail address: pbmcl@netscape.net

http://www.ams.org/mathscinet-getitem?mr=94c:11123
http://www.ams.org/mathscinet-getitem?mr=83i:68003
http://www.ams.org/mathscinet-getitem?mr=86e:11121
http://www.ams.org/mathscinet-getitem?mr=88e:11130
http://www.ams.org/mathscinet-getitem?mr=83e:65219

	1. Introduction
	2. Review and extension of the method
	Review.
	Extension.

	3. Computational frameworks
	Variation 1.
	Variation 2.
	A practical speedup.

	4. Estimated running times
	Algebraic approach.
	DFT approach.

	5. Modular multiplication of polynomials
	Appendix A: A simple numerical example of Variation 1 using algebraic factorization
	Appendix B: A simple numerical example of Variation 2 using DFT's
	Appendix C: Algebraic reconstruction formulas
	Acknowledgment
	References

