LINEARLY IMPLICIT METHODS
FOR NONLINEAR PARABOLIC EQUATIONS

GEORGIOS AKRIVIS AND MICHEL CROUZEIX

Abstract. We construct and analyze combinations of rational implicit and explicit multistep methods for nonlinear parabolic equations. The resulting schemes are linearly implicit and include as particular cases implicit-explicit multistep schemes as well as the combination of implicit Runge-Kutta schemes and extrapolation. An optimal condition for the stability constant is derived under which the schemes are locally stable. We establish optimal order error estimates.

1. Introduction
Let $T > 0$, $u^0 \in H$, and consider the initial value problem of seeking $u : [0, T] \to D(A)$ satisfying

$$
\begin{cases}
 u'(t) + Au(t) = B(t, u(t)), & 0 < t < T, \\
 u(0) = u^0,
\end{cases}
$$

with A a positive definite, self-adjoint, linear operator on a Hilbert space $(H, (\cdot, \cdot))$ with domain $D(A)$ dense in H, and $B(t, \cdot) : D(A) \to H$, $t \in [0, T]$, a (possibly) nonlinear operator. We assume that (1.1) possesses a smooth solution.

The schemes we will consider in this paper are expressed in terms of bounded rational functions $\rho_i, \sigma_i : [0, \infty] \to \mathbb{R}$, $i = 0, \ldots, q$, with $\rho_q = 1$ and $\sigma_0 = 0$: we assume that the functions σ_i vanish at infinity, $\sigma_i(\infty) = 0$. The implicit scheme described by the functions $\rho_i, i = 0, \ldots, q$, will be used for the discretization of the linear part and the explicit scheme described by the functions $\sigma_i, i = 0, \ldots, q - 1$, for the discretization of the nonlinear part of the equation.

Let $N \in \mathbb{N}$, let $k := T/N$ be the time step, and let $t^n := nk, n = 0, \ldots, N$. We recursively define a sequence of approximations U^m to $u^m := u(t^m)$ by

$$
\sum_{i=0}^{q} \rho_i(kA)U^{n+i} = k \sum_{i=0}^{q-1} \sigma_i(kA)B(t^{n+i}, U^{n+i}),
$$

assuming that starting approximations U^0, \ldots, U^{q-1} are given.

Let $\| \cdot \|$ denote the norm of H, and introduce in $V, V := D(A^{1/2})$, the norm $\| \cdot \|$ by $\|v\| := \|A^{1/2}v\|$. We identify H with its dual, and we denote by V' the dual of V.

Received by the editor May 2, 2001 and, in revised form, October 2, 2002.

2000 Mathematics Subject Classification. Primary 65M60, 65M12; Secondary 65L06.

Key words and phrases. Nonlinear parabolic equations, linearly implicit methods, strong $A(0)$-stability, implicit-explicit multistep schemes, polynomial order.

The work of the first author was supported in part by the Greek Secretariat for Research and Technology through the PENED Program, no 99ED 275.
and by $\| \cdot \|_*$ the dual norm on V'. For stability purposes, we assume that $B(t, \cdot)$ can be extended to an operator from V into V', and an estimate of the form
\begin{equation}
(1.3) \quad \|B(t, v) - B(t, w)\|_* \leq \lambda \|v - w\| + \mu |v - w| \quad \forall v, w \in T_u
\end{equation}
holds in a tube T_u, $T_u := \{ v \in V : \min_t \|u(t) - v\| \leq 1 \}$, around the solution u, uniformly in t, with the stability constant $\lambda < 1$ and a constant μ.

Stability assumptions. For $x \in [0, \infty)$ we introduce the polynomials $\rho(x, \cdot)$ and $\sigma(x, \cdot)$ by
\[\rho(x, \zeta) := \sum_{i=0}^{q} \rho_i(x)\zeta^i, \quad \sigma(x, \zeta) := \sum_{i=0}^{q-1} \sigma_i(x)\zeta^i.\]
We order the roots $\zeta_j(x), j = 1, \ldots, q$, of $\rho(x, \cdot)$ in such a way that the functions ζ_j are continuous in $[0, \infty]$ and the roots $\xi_j := \zeta_j(0), j = 1, \ldots, s$, satisfy $|\xi_j| = 1$; these unimodular roots are the principal roots of $\rho(0, \cdot)$ and the complex numbers $\lambda_j := \frac{\partial_1 \rho(0, \xi_j)}{\xi_j \partial_2 \rho(0, \xi_j)}$ (with ∂_1 denoting differentiation with respect to the first variable) are the growth factors of ξ_j. We assume that the method described by the rational functions ρ_0, \ldots, ρ_q is strongly $A(0)$-stable in the sense that for all $0 < x \leq \infty$ and for all $j = 1, \ldots, q$, there holds $|\zeta_j(x)| < 1$, and the principal roots of $\rho(0, \cdot)$ are simple and their growth factors have positive real parts, $\Re \lambda_j > 0, j = 1, \ldots, s$. This definition is motivated by the definition of the strong $A(0)$-stability for multistep schemes. Depending on the particular scheme that we use for discretizing (1.1) in time, it will be essential for our analysis that λ be appropriately small. More precisely, with
\begin{equation}
(1.4) \quad K_{(\rho, \sigma)} := \sup_{x > 0} \max_{\zeta \in S_1} |x \sigma(x, \zeta) / \rho(x, \zeta)|,
\end{equation}
we will assume
\begin{equation}
(1.5) \quad \lambda < 1 / K_{(\rho, \sigma)};
\end{equation}
here S_1 denotes the unit circle in the complex plane, $S_1 := \{ z \in \mathbb{C} : |z| = 1 \}$. Under our hypotheses, $K_{(\rho, \sigma)}$ is finite. We will show local stability of the scheme (1.2) provided the stability constant λ satisfies (1.5). Let us also note that for any constant λ exceeding the right-hand side of (1.5) we will construct examples of problems of the form (1.1) satisfying (1.3) for which the scheme (1.2) is unstable; cf. Remark 2.1. Concerning the tube T_u on the other hand, we emphasize that it is defined in terms of the norm of V for concreteness. The analysis may be modified to yield convergence under conditions analogous to (1.3) for v and w belonging to tubes defined in terms of other norms, not necessarily the same for both arguments; see [2].

Consistency assumptions. Let the consistency error $E^n, n = 0, \ldots, N - q$, of the scheme (1.2) for the solution u of (1.1) be given by
\begin{equation}
(1.6) \quad k(I + kA)^{-1} E^n = \sum_{i=0}^{q} \rho_i(kA)u^{n+i} - k \sum_{i=0}^{q-1} \sigma_i(kA)B(t^{n+i}, u^{n+i}).
\end{equation}
Let $p \geq 1$, and let functions $\varphi_{\ell} : [0, \infty) \to \mathbb{R}, \ell = 0, \ldots, p$, be defined by
\begin{equation}
\varphi_{\ell}(x) := \sum_{i=0}^{q} \left[i^\ell \rho_i(x) - (\ell + 1 + \ell^i) \sigma_i(x) \right], \quad \ell = 0, \ldots, p - 1,
\end{equation}
\begin{equation}
\varphi_p(x) := \sum_{i=0}^{q} \left[i^p \rho_i(x) - p i^{p-1} \sigma_i(x) \right].
\end{equation}

Similar functions are used in the analysis of single step schemes for inhomogeneous parabolic equations in [3]; see also [11]. Applying our scheme to initial value problems for linear scalar ordinary differential equations of the form
\begin{equation}
\begin{cases}
u' + au = f, & 0 < t < T, \\
u(0) = u^0,
\end{cases}
\end{equation}
with a positive constant a and $f \in C^p[0, T]$, we see that the scheme is of order p, i.e., the consistency error can be estimated in the form $|E^n| \leq C k^p$ with a constant C depending on the solution u, for any smooth function f, if and only if
\begin{equation}
(C_p)
\varphi_{\ell}(x) = O(x^{p+1-\ell}) \quad \text{as } x \to 0^+, \quad \ell = 0, \ldots, p;
\end{equation}
the only if part is seen via Taylor expansion. In particular, from $\varphi_0(0) = 0$ we conclude
\begin{equation}
(1.10) \quad \rho_0(0) + \cdots + \rho_p(0) = 0.
\end{equation}

We say that the polynomial order of the scheme is $\bar{p} \leq p$, or that the scheme is strictly accurate of order \bar{p}, if it integrates (1.9) exactly, whenever the exact solution u is a polynomial of degree at most $\bar{p} - 1$. It is easily seen that the polynomial order of our scheme is \bar{p} if and only if
\begin{equation}
(C_{\bar{p}}) \quad \varphi_{\ell} = 0, \quad \ell = 0, \ldots, \bar{p} - 1.
\end{equation}

To motivate the definition of these functions and to explain the condition for the polynomial accuracy, let us introduce the notation $E_n(k, a, u)$ by
\begin{equation}
E_n(k, a, u) = \sum_{i=0}^{q} \rho_i(ka)u(t^{n+i}) - k \sum_{i=0}^{q} \sigma_i(ka)(u'(t^{n+i}) + au(t^{n+i}));
\end{equation}
then we can see that
\begin{equation}
\varphi_{\ell}(x) = E_0(1, x, v_{\ell}) \quad \text{with } v_{\ell}(t) := t^\ell, \quad \text{for } \ell = 0, \ldots, p - 1,
\end{equation}
i.e., the polynomial order of the scheme (1.2) is $\bar{p} \leq p$ if and only if $(C_{\bar{p}})$ is satisfied. Let us also note for later use that, with $v_{\ell,q}(t) := (t - q + 1)^\ell$ and $\varphi_{\ell,q}(x) = E_0(1, x, v_{\ell,q}), (C_{\bar{p}})$ is clearly equivalent to
\begin{equation}
(\bar{C}_{\bar{p}}) \quad \varphi_{\ell,q} = 0, \quad \ell = 0, \ldots, \bar{p} - 1.
\end{equation}

To implement (1.2), for each linear factor in the denominator of the rational functions ρ_i and σ_i, $i = 0, \ldots, q$, we need to solve one linear problem at every time level. The linear problems reduce to linear systems when we also discretize in space. Therefore, from a computational point of view it would be convenient to choose the rational functions σ_i such that their denominators are all the same as that of the functions ρ_j, because for each common linear factor of the denominators we have to solve one linear problem. One way of achieving this, as well as condition $(\bar{C}_{\bar{p}})$, is
to first choose \(\hat{\rho}_0, \ldots, \hat{\rho}_q \) with \(\hat{\rho}_q = 1 \) such that
\[
\sum_{i=0}^{q} e^{-ix} \hat{\rho}_i(x) = O(x^{p+1}) \quad \text{as } x \to 0+,
\]
and to let the corresponding scheme be strongly \(A(0) \)-stable and then to distinguish
two cases: for \(q \geq p \) we set \(\rho_i := \hat{\rho}_i, i = 0, \ldots, q \), \(\sigma_i := 0, i = p, \ldots, q \), and for \(p > q \)
we set \(\rho_i := 0, i = 0, \ldots, p - q - 1 \), \(\rho_{p-q+i} := \hat{\rho}_i, i = 0, \ldots, q \), and then we solve the linear system
\[
\sum_{i=0}^{p-1} i^\ell \sigma_i(x) = -\frac{\ell!}{(-x)^{\ell+1}} \sum_{j=0}^{\ell} \frac{(-x)^j}{j!} \sum_{i=0}^{\max(p,q)} i^j \rho_i(x), \quad \ell = 0, \ldots, p - 1,
\]
to determine the rational functions \(\sigma_i, i = 0, \ldots, p - 1 \). This system is obviously
uniquely solvable and the rational functions \(\sigma_i \) are linear combinations of the right-hand
sides of (1.12). Hence, the only singularities of the \(\sigma_i \) are those of the \(\rho_j \) (which
are the only singularities of the right-hand sides of (1.12)), i.e., the denominator of all \(\sigma_i \)
is the least common multiple of the denominators of the functions \(\rho_0, \ldots, \rho_q \).
Also, since the functions \(\rho_i \) are bounded, the right-hand sides of (1.12) are small
for large \(x \), i.e., the numerator of \(\sigma_i \) is of lower degree than its denominator; thus
\(\sigma_i(\infty) = 0 \).

Assuming that the order and the polynomial order of our scheme are \(p \) and that
the solution \(u \) of (1.1) is sufficiently smooth, we shall estimate the consistency error
in the form
\[
\max_{0 \leq n \leq N-q} \| E^n \|_* \leq C k^p.
\]

In our main result, we shall derive optimal order error estimates in \(\| \cdot \|_* \), assuming
(1.5), that the order of our scheme is \(p \) and its polynomial order is \(p - 1 \), and that
appropriate starting values \(U^0, \ldots, U^{p-1} \) are given.

Let us note that the implicit-explicit multistep schemes analyzed in [1] and [2]
are particular cases of the schemes considered in this paper. Indeed, if we let \((\alpha, \beta) \)
be a strongly \(A(0) \)-stable \(q \)-step scheme and \((\alpha, \gamma) \) be an explicit \(q \)-step scheme,
characterized by three polynomials \(\alpha, \beta \) and \(\gamma \),
\[
\alpha(\zeta) = \sum_{i=0}^{q} \alpha_i \zeta^i, \quad \beta(\zeta) = \sum_{i=0}^{q} \beta_i \zeta^i, \quad \gamma(\zeta) = \sum_{i=0}^{q-1} \gamma_i \zeta^i,
\]
then the corresponding implicit-explicit \((\alpha, \beta, \gamma) \) scheme for (1.1) is
\[
\sum_{i=0}^{q} (\alpha_i I + k \beta_i A) U^{n+i} = \sum_{i=0}^{q-1} \gamma_i B(t^{n+i}, U^{n+i}).
\]

Now letting \(\rho_i(x) := (\alpha_i + \beta_i x)/(\alpha_q + \beta_q x), i = 0, \ldots, q \), and letting \(\sigma_i(x) := \gamma_i/(\alpha_q + \beta_q x), i = 0, \ldots, q - 1 \), it is easily seen that the scheme (1.2) reduces to
(1.14). Also, the stability and consistency conditions in this paper coincide in this
case with those of [2].

Keeling [3] has constructed and analyzed combinations of a strongly \(A_0 \)-stable
implicit Runge-Kutta method (IRKM) and an extrapolation scheme for the discretization
of semilinear parabolic equations. These schemes, even for stronger nonlinearities, are included in the class considered in this paper; see Section 7.
The analysis in this paper is based on the one in [2] and concerns a much wider class of methods. We also note that ideas from [3] are used in our analysis in various places.

Roughly speaking, our methods can be viewed as an extension of the Rosenbrock methods based on an inexact Jacobian; the motivation is the same as in [10]. Other classes of linearly implicit methods are constructed in [8] and [9]; they correspond to the use of approximate Jacobians. Clearly the methods based on approximate Jacobians have better stability properties and are easier to analyze. An advantage of our methods is that they avoid recomputation of these Jacobians.

An outline of the paper is as follows: Sections 2 and 3 are devoted to the local stability and consistency, respectively, of the linearly implicit scheme. Optimal order error estimates are derived in Section 4. Section 5 is devoted to error estimates for fully discrete schemes. The computation of appropriate starting approximations is addressed in Section 6. In Section 7 we shall show that Keeling’s schemes can be written in the form (1.2) and that they satisfy our hypotheses.

2. Local stability

In this section we show local stability of the scheme (1.2) under the condition (1.5). We will also see that if λ in (1.3) exceeds the right-hand side of (1.5), then for an appropriate choice of A and B the scheme (1.2) is unstable.

Let \(U^m, V^m \in T_u, m = 0, \ldots, N \), satisfy (1.2) and

\[
(2.1) \quad \sum_{i=0}^{q} \rho_i(kA)V^{n+i} = k \sum_{i=0}^{q-1} \sigma_i(kA)B(t^{n+i}, V^{n+i}),
\]

\(n = 0, \ldots, N-q \), respectively. Let \(\vartheta^m := U^m - V^m, b^m := B(t^m, U^m) - B(t^m, V^m) \), \(m = 0, \ldots, N \). Subtracting (2.1) from (1.2), we obtain

\[
(2.2) \quad \sum_{i=0}^{q} \rho_i(kA)\vartheta^{n+i} = k \sum_{i=0}^{q-1} \sigma_i(kA)b^{n+i}, \quad n = 0, \ldots, N-q.
\]

The rational functions \(e(\ell, \cdot) \) and \(f(\ell, \cdot) \) defined through the expansions

\[
(2.3) \quad (\rho(x, \zeta))^{-1} = \sum_{\ell \in \mathbb{Z}} e(\ell, x) \zeta^{-\ell}, \quad (\rho(x, \zeta))^{-1} \sigma(x, \zeta) = \sum_{\ell \in \mathbb{Z}} f(\ell, x) \zeta^{-\ell}
\]

will play a crucial role in the stability analysis. Since, for all \(x \in (0, \infty) \), the modulus of all roots of \(\rho(x, \cdot) \) is less than one, expansions (2.3) are valid for all \(\zeta \) in the exterior of the unit circle, \(|\zeta| \geq 1 \), and we have \(e(\ell, \cdot) = 0 \) for \(\ell \leq q-1 \) and \(f(\ell, \cdot) = 0 \) for \(\ell \leq 0 \). We also note that the only poles of these rational functions are the poles of \(\rho_i, \sigma_i, i = 0, \ldots, q \), and that they vanish at \(\infty, f(\ell, \infty) = f(\ell, \infty) = 0 \). Thus, we can define \(e(\ell, kA) \) and \(f(\ell, kA) \). Let \(\vartheta_1^0 = 0, \quad \vartheta_1^n = k \sum_{\ell=0}^{n-1} f(n-\ell, kA)b^\ell \). Then, in view of (2.3), we have

\[
(2.4) \quad \sum_{i=0}^{q} \rho_i(kA)\vartheta_1^{n+i} = k \sum_{i=0}^{q-1} \sigma_i(kA)b^{n+i}, \quad n = 0, \ldots, N-q.
\]

Furthermore, let \(\vartheta_2^n := \vartheta^n - \vartheta_1^n \). From (2.2) and (2.4) we immediately obtain

\[
(2.5) \quad \sum_{i=0}^{q} \rho_i(kA)\vartheta_2^{n+i} = 0, \quad n = 0, \ldots, N-q.
\]
With \(g_j(n, x) = \sum_{\ell=j+1}^{q} e(n+\ell-j, x) \rho_\ell(x) \), it is easily seen that \(\vartheta^n_2 = \sum_{j=0}^{q-1} g_j(n, kA) \vartheta^n_j \).

An adaptation of the techniques used in \([7]\) (see also \([9]\)) based on Parseval’s identity allows us to prove the following result.

Lemma 2.1. There exist positive constants \(K_2, N_1 \) and \(N_2 \), depending only on \(\rho_\ell, \sigma_\ell, i = 0, \ldots, q \), such that for any \(n, 0 \leq n \leq N \), the following estimates are valid:

\[
\begin{align*}
(2.6i) \quad & k \sum_{\ell=0}^{n} \| \vartheta^n_\ell \|^2 \leq K_2^2, \\
(2.6ii) \quad & \| \vartheta^n_1 \|^2 \leq K_2 k \sum_{\ell=0}^{n-1} \| b^n_\ell \|^2, \\
(2.7i) \quad & k \sum_{\ell=q}^{n} \| \vartheta^n_2 \|^2 \leq qN_1 \sum_{j=0}^{q-1} (|\vartheta^n_j|^2 + k \| \vartheta^n_j \|^2), \\
(2.7ii) \quad & |\vartheta^n_2| \leq N_2 \sum_{j=0}^{q-1} |\vartheta^n_j|.
\end{align*}
\]

In particular, with \(k_1(x, \zeta) = \frac{x \sigma(x, \zeta)}{\rho(x, \zeta)} \), \(N_2 = \max_{0 \leq j \leq q-1} \sup_{n \geq q} \sup_{x > 0} |g_j(n, x)| \), \(K_2 = \sup_{x > 0} \int_{0}^{1} \left| \frac{1}{\sqrt{x}} k_1(x, e^{-2\pi t}) \right|^2 dt \), \(N_1 = \max_{0 \leq j \leq q-1} \sup_{x > 0} \int_{0}^{1} x |\delta_j(x, e^{-2\pi t})|^2 dt \), where \(\delta_j(x, \zeta) = -\sum_{\ell=0}^{j} \rho_\ell(x) \zeta^\ell / \rho(x, \zeta) \).

Proof. The proof that \(K_{(0, \sigma)}, K_2, N_1, N_2 \) are finite is similar to analogous results in \([2]\) and is omitted. It suffices to show the estimates for \(b^n_\ell = 0 \) for \(\ell \geq n \) and \(n \) replaced by \(\infty \) on the right-hand sides. We introduce \(\hat{b}, \hat{\vartheta}_1 \) and \(\hat{\vartheta}_2 \) by

\[
\hat{b}(t) = \sum_{\ell=0}^{\infty} b^n_\ell e^{2\pi i \ell t}, \quad \hat{\vartheta}_1(t) = \sum_{\ell=0}^{\infty} \vartheta^n_\ell e^{2\pi i \ell t}, \quad \hat{\vartheta}_2(t) = \sum_{\ell=q}^{\infty} \vartheta^n_\ell e^{2\pi i \ell t},
\]

from the definition of \(\vartheta_1 \) and (2.3), we deduce

\[
\hat{\vartheta}_1(t) = k(\rho(kA, e^{-2\pi t}))^{-1} \sigma(kA, e^{-2\pi t}) \hat{b}(t).
\]

Therefore, we have \(\| \hat{\vartheta}_1(t) \| \leq K_{(0, \sigma)} \| \hat{b}(t) \| \), and, using Parseval’s identity,

\[
\sum_{\ell=0}^{\infty} \| \vartheta^n_\ell \|^2 = \int_{0}^{1} \| \hat{\vartheta}_1(t) \|^2 dt \leq K_{(0, \sigma)}^2 \int_{0}^{1} \| \hat{b}(t) \|^2 dt = K_{(0, \sigma)}^2 \sum_{\ell=0}^{\infty} \| b^n_\ell \|^2,
\]

i.e. (2.6i) holds. For the estimate (2.6ii), we use the relation

\[
\vartheta^n_1 = \int_{0}^{1} e^{-2\pi i \ell t} \hat{\vartheta}_1(t) dt = \int_{0}^{1} e^{-2\pi i \ell t} A^{-1} k_1(kA, e^{-2\pi t}) \hat{b}(t) dt,
\]

and we obtain

\[
|\vartheta^n_1|^2 = \int_{0}^{1} e^{-2\pi i \ell t} (\hat{b}(t), A^{-1} k_1(kA, e^{2\pi i t}) \vartheta^n_1) dt,
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
and thus
\[|\vartheta^n_1|^2 \leq \left(\int_0^1 \|\hat{b}(t)\|^2 dt \right)^{1/2} \left(\int_0^1 \|A^{-1}k_1(kA, e^{2i\pi t}) \vartheta^n_1\|^2 dt \right)^{1/2}. \]

Introducing the operator \(A \) by
\[A = \int_0^1 (kA)^{-1} k_1(kA, e^{-2i\pi t}) k_1(kA, e^{2i\pi t}) dt, \]
we then have
\[\int_0^1 \|A^{-1}k_1(kA, e^{2i\pi t}) \vartheta^n_1\|^2 dt = k(A\vartheta^n_1, \vartheta^n_1) \leq k\|A\|_{L(H)} |\vartheta^n_1|^2. \]
Since \(A \) is self-adjoint, we have
\[\|A\|_{L(H)} \leq \sup_{\nu \in \text{Sp}(A)} \int_0^1 \frac{|k_1(k\nu, e^{-2i\pi t})|^2}{k\nu} dt \leq K_2 \]
with \(\text{Sp}(A) \) denoting the spectrum of \(A \), and so we conclude that \(|\vartheta^n_1|^2 \leq kK_2 \int_0^1 \|\hat{b}(t)\|^2 dt \) and (2.6ii) follows. In order to prove (2.7i), we first note that, in view of (2.3), an easy calculation shows that
\[\hat{\vartheta}_2(t) = \sum_{j=0}^{q-1} \delta_j(e^{-2i\pi t}, kA)\vartheta^n_2 e^{2i\pi jt}; \]
cf. [2]. Furthermore, as in the proof of (2.6ii),
\[k \int_0^1 \|\delta_j(e^{-2i\pi t}, kA)\vartheta^n_2 e^{2i\pi jt}\|^2 dt \leq N_1 (|\vartheta^n_1|^2 + k\|\vartheta^n_2\|^2), \]
and, therefore,
\[k \int_0^1 \|\hat{\vartheta}_2(t)\|^2 dt \leq qN_1 \sum_{j=0}^{q-1} (|\vartheta^n_1|^2 + k\|\vartheta^n_2\|^2), \]
which immediately yields (2.7i). The estimate (2.7ii) is obvious.

In Theorem 2.1 we will estimate \(\vartheta^n \) in terms of \(\vartheta^0, \ldots, \vartheta^{q-1} \). Part of \(\vartheta^n \), namely \(\vartheta^n_2 \), will be estimated in terms of \(\vartheta^0, \ldots, \vartheta^{q-1} \) in the following lemma.

Lemma 2.2. There exists a constant \(C \) such that, for \(n = 0, \ldots, N \),
\[(2.8) \quad |\vartheta^n_2|^2 + k \sum_{\ell=0}^n \|\vartheta^n_2\|^2 \leq C \sum_{j=0}^{q-1} (|\vartheta^j|^2 + k\|\vartheta^j\|^2). \]

Proof. Obviously, we have \(\vartheta^n_2 = \vartheta - k \sum_{\ell=0}^{j-1} f(j-\ell, kA)b^\ell, j = 0, \ldots, q-1 \). Therefore
\[|\vartheta^n_2| \leq |\vartheta| + \sqrt{k} \sum_{\ell=0}^{j-1} m_{j-\ell}\|b^\ell\|, \quad \text{and} \quad \|\vartheta^n_2\| \leq \|\vartheta\| + \sum_{\ell=0}^{j-1} n_{j-\ell}\|b^\ell\|, \]
with \(m_{j} = \sup_{x>0} |\sqrt{x}f(\ell, x)| \) and \(n_{\ell} = \sup_{x>0} |xf(\ell, x)| \). Then (2.8) follows from (2.7) and (1.3).

The main result in this section, the local stability of the scheme (1.2), is given in the following theorem:
Thus, we have

\begin{equation}
|\vartheta|^2 + \sum_{\ell=0}^{n} \| \vartheta^\ell \|^2 \leq C e^{c n^2} \sum_{j=0}^{q-1} (|\vartheta|^2 + k\| \vartheta^j \|^2),
\end{equation}

\begin{equation}
n = q - 1, \ldots, N, \text{ with constants } C \text{ and } c \text{ independent of } U^m, V^m \text{ and } k.
\end{equation}

\textbf{Proof.} In view of (1.3) and Minkowski’s inequality we have

\begin{equation}
\left(\sum_{\ell=0}^{n-1} \| \vartheta^\ell \|^2 \right)^{1/2} \leq \left(\sum_{\ell=0}^{n-1} (\lambda \| \vartheta^\ell \|^2 + \mu |\vartheta^\ell|)^2 \right)^{1/2} \leq \lambda a_{n-1} + \mu d_{n-1} + e_{n-1},
\end{equation}

\begin{align*}
a_n &= \left(\sum_{\ell=0}^{n} \| \vartheta^\ell \|^2 \right)^{1/2}, \\
d_n &= \left(\sum_{\ell=0}^{n} |\vartheta^\ell|^2 \right)^{1/2}, \\
e_n &= \left(\sum_{\ell=0}^{n} (\lambda \| \vartheta^\ell \|^2 + \mu |\vartheta^\ell|)^2 \right)^{1/2}.
\end{align*}

Thus, (2.6ii) and (2.6ii) yield, for \(n \geq 1\),

\begin{equation}
a_n \leq K_{(p, \sigma)}(\lambda a_{n-1} + \mu d_{n-1} + e_{n-1}) \leq K_{(p, \sigma)}(\lambda a_n + \mu d_n + e_n),
\end{equation}

and

\begin{align*}
\frac{d_n^2 - d_{n-1}^2}{k} &\leq K_2(\lambda a_n + \mu d_n + e_n)^2.
\end{align*}

Therefore, in view of (1.5), we have \(\lambda K_{(p, \sigma)} < 1\) and

\begin{equation}
\frac{d_n^2 - d_{n-1}^2}{k} \leq K_2(\mu d_n + e_n)^2 \leq 2c(\mu^2 d_n^2 + e_n^2),
\end{equation}

with \(c = \frac{K_2}{(1-\lambda K_{(p, \sigma)})^2}\). Hence, we deduce (note that \(d_0 = 0\))

\begin{equation}
d_n^2 \leq 2k \sum_{\ell=0}^{n-1} e^{2c^2(n-\ell)} e_\ell^2 \leq 2c e^{c^2 n^2} \frac{1}{e^2} e_n^2 \leq \frac{e^{c^2 n^2}}{\mu^2} e_n^2.
\end{equation}

Thus, we have \(\mu d_n \leq e^{c^2 n^2} e_n\) and

\begin{align*}
\text{(2.10i)} & \quad a_n \leq \frac{K_{(p, \sigma)}}{1 - K_{(p, \sigma)} \lambda} (1 + e^{c^2 n^2}) e_{n-1}, \\
\text{(2.10ii)} & \quad |\vartheta|^2 \leq \sqrt{c} (\mu d_n + e_n) \leq \sqrt{c} (1 + e^{c^2 n^2}) e_{n-1}.
\end{align*}

Now, (2.10) and (2.8) yield

\begin{equation}
|\vartheta|^2 + k \sum_{\ell=0}^{n} \| \vartheta^\ell \|^2 \leq C e^{c n^2} \sum_{j=0}^{q-1} (|\vartheta|^2 + k\| \vartheta^j \|^2).
\end{equation}

From (2.11) and (2.8) we easily obtain (2.9) and the proof is complete. \(\square\)
Remark 2.1. The condition (1.5) is sharp in the sense that, for any constant λ exceeding the right-hand side of (1.5), we can give examples of operators A and B satisfying (1.3) for which the scheme (1.2) is unstable. Indeed, assume that λK_{(ρ,σ)} > 1. In view of this hypothesis and the fact that \lim_{|ζ|→∞} |xσ(x,ζ)/ρ(x,ζ)| = 0, there exists a positive x and a ζ ∈ C with |ζ| > 1 satisfying |λxσ(x,ζ)/ρ(x,ζ)| = 1; therefore, there exists a Θ ∈ R such that

\[\sum_{i=0}^{q} ρ_i(x)ζ^i = λxe^{iΘ} \sum_{i=0}^{q-1} σ_i(x)ζ^i. \]

Then choosing \(B(t, u) := λe^{iΘ}Au \), it is easily seen that the scheme is unstable; see Remark 2.3 in [2].

3. Consistency

In this section we will derive an optimal order estimate for the consistency error \(E^n \) (see (3.5) below), assuming that the order and the polynomial order of the scheme are \(p \). We will also derive some preliminary consistency estimates for polynomial order \(p - 1 \) which will be used in Section 4 to establish optimal order error estimates.

Letting

\begin{align*}
E_1^n &:= \sum_{i=0}^{p} \frac{k^i}{i!} \tilde{φ}_i(kA)u^{(i)}(t^n), \\
E_2^n &:= \frac{1}{p!} \sum_{i=0}^{q} \rho_i(kA) \int_{t^n}^{t^{n+i}} (t^{n+i} - s)^p u^{(p+1)}(s) ds, \\
E_3^n &:= -\frac{k}{(p-1)!} \int_{t^n}^{t^{n+i}} \sum_{i=0}^{q-1} \sigma_i(kA) \int_{t^n}^{t^{n+i}} (t^{n+i} - s)^{p-1} (u^{(p+1)} + Au^{(p)}) (s) ds,
\end{align*}

and using Taylor expansion on the right-hand side of (1.6), we easily see that

\[k(I + kA)^{-1} E^n = E_1^n + E_2^n + E_3^n. \]

Assume now that the order and the polynomial order of our scheme are \(p \); see (C_p). Then, in view of (3.1a), \(E_1^n = k^{p} \varphi_p(kA)u^{(p)}(t^n)/p! \), i.e.,

\[(I + kA)E_1^n = \frac{k^{p+1}}{p!} [(kA)^{-1} \varphi_p(kA) + \varphi_p(kA)] Au^{(p)}(t^n). \]

Now using the fact that \(\varphi_p \) and \(\tilde{φ}_p, \tilde{φ}_p(x) := \varphi_p(x)/x \), are bounded, we easily conclude

\[\| (I + kA)E_1^n \|_* \leq Ck^{p+1} \| u^{(p)}(t^n) \|. \]

Similarly, using the boundedness of \(ρ_i, σ_i \) and \(\tilde{σ}_i, \tilde{σ}_i(x) := xσ_i(x) \), we easily obtain

\begin{align*}
\| (I + kA)E_2^n \|_* &\leq Ck^{p} \int_{t^n}^{t^{n+i}} (\| u^{(p+1)}(s) \|_* + k\| u^{(p+1)}(s) \|) ds, \\
\| (I + kA)E_3^n \|_* &\leq Ck^{p} \int_{t^n}^{t^{n+i}} (\| u^{(p+1)}(s) \|_* + \| u^{(p)}(s) \|) ds.
\end{align*}
From (3.4) and (3.2) we immediately obtain the desired consistency estimate

\[(3.5) \quad \max_{0 \leq n \leq N-q} \|E^n\|_* \leq C k^p.\]

Remark 3.1. The case of polynomial order less than \(p \) can be treated as well, but to obtain optimal order error estimates some compatibility conditions would be required; without such conditions order reduction would occur; cf. [3] and [4].

However, if the polynomial order is \(p - 1 \), using the fact that the function \(\eta \),

\[(3.6) \quad \eta(x) = \varphi_{p-1}(x)/|x \rho(x, 1)|,\]

is bounded in \([0, \infty)\), we will prove in Theorem 4.2 optimal order error estimates without any compatibility conditions. First of all, let us note that \(\eta \) is bounded in a neighborhood of 0 since \(\rho(0, 1) = 0 \), \(\partial_2 \rho(0, 1) \neq 0 \) and \(\varphi_{p-1}(x) = O(x^2) \); it is also bounded in \([c, \infty)\) for any positive \(c \), since \(\rho(\cdot, 1) \) is there uniformly bounded away from 0. As a preliminary result for Theorem 4.2, let us note that in this case, according to (3.1a), there is an additional term to \(E^n_1 \) which can be written as

\[
\frac{k^{p-1}}{(p-1)!} \varphi_{p-1}(kA) u^{(p-1)}(t^n) \quad = \quad \frac{k^p}{(p-1)!} \eta(kA) \rho(kA, 1) A\rho^{(p-1)}(t^n) \quad = \quad k(I + kA)^{-1} E^n + \frac{k^p}{(p-1)!} \eta(kA) \sum_{i=0}^{q} \rho_i(kA) A\rho^{(p-1)}(t^n) - u^{(p-1)}(t^{n+i}),
\]

with \(E^n \) such that

\[
k(I + kA)^{-1} E^n = \frac{k^p}{(p-1)!} \eta(kA) \sum_{i=0}^{q} \rho_i(kA) A\rho^{(p-1)}(t^{n+i}).
\]

Thus in this case, since \(\tilde{\eta}, \tilde{\eta}(x) := (1 + x)\eta(x) \), is bounded, (3.5) is replaced by

\[(3.7) \quad \max_{0 \leq n \leq N-q} \|E^n - E^n_1\|_* \leq C k^p.\]

4. Error estimates

In this section we assume (1.5), that the order of our scheme is \(p \), and that its polynomial order is \(p - 1 \), and we shall derive optimal order error estimates. In our first result, Theorem 4.1, we will assume polynomial order \(p \), and in our main result, Theorem 4.2, we relax this condition to polynomial order \(p - 1 \).

We note that we will use similar notation to that in Section 2; however several quantities, like \(\vartheta^m \) and \(b^m \), do not coincide with those in Section 2.

Let \(\vartheta^m := u^m - U^m, b^m := B(t^m, u^m) - B(t^m, U^m), m = 0, \ldots, N. \) Subtracting (1.2) from (1.6), we obtain

\[(4.1) \quad \sum_{i=0}^{q} \rho_i(kA) \vartheta^{n+i} = k \sum_{j=0}^{q-1} \sigma_j(kA) b^{n+j} + k(I + kA)^{-1} E^n,\]
Let the order and the polynomial order of the scheme be \(p \). Assume we are given starting approximations \(U^0, U^1, \ldots, U^{q-1} \in V \) to \(u^0, \ldots, u^{q-1} \) such that

\[
\max_{0 \leq j \leq q-1} \left(\|u^j - U^j\| + k^{1/2} \|u^j - U^j\| \right) \leq C k^p.
\]

Let \(U^n \in V, n = q, \ldots, N \), be recursively defined by (1.2). Let \(\vartheta^n = u^n - U^n, n = 0, \ldots, N \). Then, there exist constants \(C \) and \(c \), independent of \(k \) and \(n \), such that, for \(k \) sufficiently small,

\[
\|\vartheta^n\|^2 + k \sum_{\ell=0}^n \|\vartheta^\ell\|^2 \leq Ce^{\nu_2^q n} \left\{ \sum_{j=0}^{q-1} (\|\vartheta^j\|^2 + k\|\vartheta^j\|^2) + k \sum_{\ell=0}^n \|E^\ell\|^2 \right\},
\]

\(n = q - 1, \ldots, N \), and

\[
\max_{0 \leq n \leq N} |u(t^n) - U^n| \leq C k^p.
\]
Proof. In view of (4.5) and (3.5), it is easily seen that (4.7) follows from (4.6). Thus, it remains to prove (4.6). According to (4.5) and (3.5), there exists a constant \(C_\ast \) such that the right-hand side of (4.6) can be estimated by \(C_\ast^2 k^{2p} \),

\[
Ce^{\mu^2 T} \left\{ \sum_{j=0}^{q-1} (|\vartheta_j|^2 + k\|\vartheta_j\|^2) + k \sum_{\ell=0}^{N-n} \|E^{\ell}\|^2 \right\} \leq C_\ast^2 k^{2p}.
\]

The estimate (4.6) is obviously valid for \(n = q - 1 \). Assume that it holds for \(q - 1, \ldots, n - 1, q \leq n \leq N \). Then, according to (4.8) and the induction hypothesis, we have, for \(k \) small enough,

\[
\max_{0 \leq j \leq n-1} \|\vartheta_j\| \leq C_\ast k^{p-1/2} \leq 1/2,
\]

and thus \(U^j \in \mathcal{T}_u, j = 0, \ldots, n-1 \). It is then easily seen (cf. the derivation of (2.11)) that

\[
|\vartheta_1^n|^2 + k \sum_{\ell=0}^{n} \|\vartheta_1^\ell\|^2 \leq Ce^{2\epsilon_n^p} \sum_{j=0}^{q-1} \left(|\vartheta_j|^2 + k\|\vartheta_j\|^2 \right).
\]

From (4.4) and (4.10) it easily follows that (4.6) holds for \(n \) as well, and the proof is complete. \(\square \)

The main result in this section is given in the following theorem:

Theorem 4.2. Let the polynomial order of the scheme be \(p - 1 \) and all other conditions of Theorem 4.1 be satisfied. Then the estimates of Theorem 4.1 are valid.

Proof. We let \(\vartheta_1^n, \vartheta_2^n \) be as before and split \(\vartheta_3^n \) in two parts, \(\hat{\vartheta}_3^n \) and \(\tilde{\vartheta}_3^n \), with

\[
\hat{\vartheta}_3^n := k \sum_{\ell=0}^{n-q} e(n - \ell, kA) (I + kA)^{-1} (E^{\ell} - \hat{E}^{\ell}),
\]

\[
\tilde{\vartheta}_3^n := k \sum_{\ell=0}^{n-q} e(n - \ell, kA) (I + kA)^{-1} \tilde{E}^{\ell}.
\]

In view of (4.3) and (3.7), \(\hat{\vartheta}_3^n \) can be easily estimated. Furthermore, using (2.3), we have

\[
\sum_{\ell=0}^{n-q} e(n - \ell, x) \sum_{i=0}^{q} \rho_i(x) z^\ell i = \sum_{i=0}^{q} g_{q-1-i}(q + i, x) z^{n-i} - \sum_{i=0}^{q-1} g_{q-1-i}(n - i, x) z^i,
\]

and we deduce

\[
\hat{\vartheta}_3^n = \frac{k^p}{(p - 1)!} \eta(kA) \left(\sum_{i=0}^{q-1} g_{q-1-i}(q + i, kA) A u^{(p-1)}(t^{n-i}) - \sum_{i=0}^{q-1} g_{q-1-i}(n - i, kA) A u^{(p-1)}(t^i) \right),
\]

where

\[
\eta(kA) = \frac{(1 - e^{-kA})}{kA}.
\]
and thus easily, in view also of the fact that \(\hat{\eta}, \hat{\eta}(x) = (1 + x)\eta(x) \), is bounded,

\[
|\hat{\eta}^n| + k \sum_{\ell=0}^{n} |\hat{\eta}^\ell| \leq Ck^{2p}.
\]

Combined with the other estimates, this shows that the results of Theorem 4.1 are valid also for polynomial order \(p - 1 \).

Remark 4.1. The constants in this and previous sections as well as conditions like “\(k \) sufficiently small” do not directly depend on the particular choice of the operators \(A \) and \(B \); they only depend on \(\lambda, \mu \), the discretization scheme and on various norms of the solution \(u \). This fact will play a crucial role in the analysis of fully discrete schemes in the next section.

5. Fully discrete schemes

In this section we establish optimal order error estimates for fully discrete schemes assuming that the order and the polynomial order of the scheme are \(p \) and \(p - 1 \), respectively.

For the space discretization we shall use a family \(V_h, 0 < h < 1 \), of finite dimensional subspaces of \(V \). In this section the following discrete operators will play an essential role: Define \(P_o : V' \to V_h, A_h : V \to V_h \), and the nonlinear operators \(B_h(t, \cdot) : V \to V_h \) by

\[
(P_o v, \chi) = (v, \chi) \quad \forall \chi \in V_h,
\]

\[
(A_h \varphi, \chi) = (A \varphi, \chi) \quad \forall \chi \in V_h,
\]

\[
(B_h(t, \varphi), \chi) = (B(t, \varphi), \chi) \quad \forall \chi \in V_h.
\]

The semidiscrete problem corresponding to (1.1) is to seek a function \(u_h, u_h(t) \in V_h \), satisfying

\[
\begin{cases}
 u_h'(t) + A_h u_h(t) = B_h(t, u_h(t)), & 0 < t < T, \\
 u_h(0) = u_h^0,
\end{cases}
\]

with \(u_h^0 \in V_h \) a given approximation to \(u^0 \).

To construct a fully discrete scheme, we discretize (5.1) in time. Assuming that starting approximations \(U^0, \ldots, U^{q-1} \in V_h \) to \(u^0, \ldots, u^{q-1} \) are given, we define recursively a sequence of approximations \(U^m \in V_h \) to \(u := u(t) \) by

\[
\sum_{i=0}^{q} \rho_i(kA_h)U^{n+i} = k \sum_{i=0}^{q-1} \sigma_i(kA_h)B_h(t^{n+i}, U^{n+i}).
\]

Let \(B(t, \cdot) : V \to V' \) be differentiable, and assume that the linear operator \(M(t) \), \(M(t) := A - B'(t, u(t)) + \kappa I \), is uniformly positive definite, for an appropriate constant \(\kappa \). We introduce the “elliptic” projection \(R_h(t) : V \to V_h, t \in [0, T] \), by

\[
P_o M(t)R_h(t)v = P_o M(t)v
\]

and we refer to [2] for motivation of this definition. We will show consistency of the semidiscrete equation for \(R_h(t)u(t) \); to this end we shall use approximation properties of the elliptic projection operator \(R_h(t) \). We let \(W(t) := R_h(t)u(t) \), and we assume that \(R_h(t) \) satisfies the estimates

\[
|u(t) - W(t)| + h^{d/2}||u(t) - W(t)|| \leq Ch^r,
\]
Let \(U \) be recursively defined by
\[
\begin{align*}
&U_0 = U_0; \quad n = 0, \ldots, N. \\
&U_n = \rho_n - W^n, n = 0, \ldots, N, \text{ with } u^n := u(t^n) \text{ and } W^n := W(t^n). \quad \text{In view of (5.3), we have}
\end{align*}
\]

Obviously \(\tilde{B}(t, v) := B(t, v) + E_h(t) \) (cf. (5.7)) satisfies (1.3) with the same constants \(\lambda \) and \(\mu \). Now let \(\tilde{W}^j := W^j, j = 0, \ldots, q - 1 \), and define \(\tilde{W}^n, n = q, \ldots, N \), by applying the time discretization scheme to the equation (5.7), i.e., by
\[
\begin{align*}
\sum_{i=0}^{q} \rho_i(kA_h)\tilde{W}^{n+i} = k \sum_{i=0}^{q-1} \sigma_i(kA_h)\tilde{B}_h(t^{n+i}, \tilde{W}^{n+i}),
\end{align*}
\]
with \(\tilde{B}_h(t, v) = B_h(t, v) + E_h(t) \). Then, according to Theorem 4.2, and in view of (3.4) and (5.5),

\[
(5.14) \quad \max_{0 \leq n \leq N} |W^n - \tilde{W}^n| \leq Ck^p.
\]

In view of (5.12) and (5.14), it remains to estimate \(\varphi^n := \tilde{W}^n - U^n \). Subtracting (5.2) from (5.13), we obtain

\[
(5.15) \quad \sum_{i=0}^q \rho_i(kA_h)\varphi^{n+i} = k \sum_{i=0}^{q-1} \sigma_i(kA_h) \left[B_h(t^{n+i}, \tilde{W}^{n+i}) - B_h(t^{n+i}, U^{n+i}) \right] + k \sum_{i=0}^{q-1} \sigma_i(kA_h)E_h(t^{n+i}).
\]

Now using the boundedness of \(\sigma_i \) and (4.6), we get

\[
|\varphi^n|^2 + k \sum_{i=0}^n \|\varphi^i\|^2 \leq C e^{c_1 t^n} \left\{ \sum_{j=0}^{q-1} (\|\varphi^j\|^2 + k\|\varphi^j\|^2) + k \sum_{i=0}^{n-q} \|E_h(t^i)\|^2 \right\}.
\]

From this estimate, in view of (5.9) and our condition on the starting approximations, we easily conclude

\[
(5.16) \quad \max_{0 \leq n \leq N} |\tilde{W}^n - U^n| \leq C(k^p + h^r).
\]

Let us note that it is in the derivation of (5.16) and (5.17) where we need the mesh condition “\(h^{2r}k^{-1} \) sufficiently small”; this is due to the fact that the analog of (4.9) now reads

\[
\max_{0 \leq j \leq n-1} \|\varphi^j\| \leq C_* (k^{p-1/2} + h^r k^{-1/2}) \leq 1/2,
\]

and for the last estimate to be satisfied we need to assume \(k \) and \(h^{2r}k^{-1} \) to be sufficiently small; it is then easily seen that \(U^j \in T_u, j = 0, \ldots, n-1 \). From (5.12), (5.14) and (5.17) the desired estimate (5.11) follows and the proof is complete. \(\square \)

For several examples of multistep schemes as well as for partial differential equations satisfying the conditions of this paper we refer the reader to [2] and [1].

Remark 5.1. If the estimate (1.3) holds in tubes around \(u \) defined in terms of other norms, the mesh condition “\(h^{2r}k^{-1} \) small” of Theorem 5.1 has to be modified; see Remark 2.2 in [2].

6. Computation of starting approximations

In this section we present two schemes, one nonlinear and one linear, for the computation of starting approximations satisfying condition (5.10). We assume that \(B(t, \cdot) \) can be modified to yield an operator \(\mathcal{B}(t, \cdot) : V \to V' \) coinciding with \(B(t, \cdot) \) in the tube \(T_u \), \(\mathcal{B}(t, \cdot) = B(t, \cdot) \) for all \(v \in T_u \), and satisfying the global Lipschitz condition (cf. (1.3))

\[
(6.1) \quad \| \mathcal{B}(t, v) - \mathcal{B}(t, w) \|_* \leq \lambda \| v - w \| + \mu |v - w| \quad \forall v, w \in V.
\]

Otherwise, for the nonlinear scheme the assumptions of Section 5 will be sufficient, while for the linear scheme some additional natural hypotheses will be needed. In particular, we assume that \(k \) and \(h^{2r}k^{-1} \) are sufficiently small.
A nonlinear scheme. Assume that the data of problem (1.1) are smooth enough such that one can determine the derivatives $u^{(j)}$, $j = 0, \ldots, p-1$, of the solution at $t = 0$. Let φ^m be given by $\varphi^m := u^0 - \sum_{j=1}^{p-1} \frac{j-1}{j} (mk)^j u^{(j)}(0)$; these functions may be considered given since $u'(0), \ldots, u^{(p-1)}(0)$ may be recursively determined from the data of (1.1).

Let $m \in \{1, \ldots, q-1\}$. It is easily seen that
\begin{equation}
(6.2) \quad u(t^m) - mk u'(t^m) = \varphi^m + \psi^m,
\end{equation}
with ψ^m such that
\begin{equation}
(6.3) \quad |\psi^m| \leq C k^p.
\end{equation}
Using in (6.2) the differential equation of (1.1) and letting $u^m := u(t^m)$, we obtain
\begin{equation}
(6.4) \quad u^m + mk[Au^m - B(t^m, u^m)] = \varphi^m + \psi^m
\end{equation}
which motivates the definition of $U^m \in V_h$ by
\begin{equation}
(6.5) \quad U^m + mk[A_h U^m - B_h(t^m, U^m)] = P_o \varphi^m.
\end{equation}
Besides this scheme, we also consider the modified scheme
\begin{equation}
(6.5') \quad V^m + mk[A_h V^m - B_h(t^m, V^m)] = P_o \varphi^m
\end{equation}
with $B_h(t, \cdot) : V \to V_h$ such that $(B_h(t, \varphi), \chi) = (B(t, \varphi), \chi)$ for all $\chi \in V_h$. We shall show that V^m is well defined by (6.5'); then we will estimate $W^m - V^m$, and we will finally conclude that under our mesh condition U^m is a locally unique solution of (6.5) satisfying (5.10).

Existence. To establish existence of V^m we shall make use of the following version of the Brouwer fixed-point theorem.

Lemma 6.1. Let $(H, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space and denote its norm by $|\cdot|$. Let $g : H \to H$ be continuous, and assume that, for some positive δ, $g(x), x > 0$ for all $x \in H$ such that $|x| = \delta$. Then, there exists an $x^* \in H$ with $|x^*| < \delta$ such that $g(x^*) = 0$.

To apply Lemma 6.1 to show the existence of a solution of (6.5'), let $g : V_h \to V_h$ be given by $g(v) := v + mk[A_h v - B_h(t^m, v)] - P_o \varphi^m$. Obviously, g is continuous. Furthermore,
\begin{align*}
(g(v), v) &= |v|^2 + mk(Av, v) - mk\langle B(t^m, v), v \rangle - (\varphi^m, v) \\
&= |v|^2 + mk|v|^2 - mk\langle B(t^m, v) - B(t^m, 0), v \rangle - (mkB(t^m, 0) + \varphi^m, v) \\
&\geq |v|^2 + mk|v|^2 - mk\|B(t^m, v) - B(t^m, 0)\| \cdot |v| - |mkB(t^m, 0) + \varphi^m| \cdot |v|.
\end{align*}
Now, using (6.1) and the algebraic-geometric inequality, we obtain
\begin{equation}
(6.6) \quad (g(v), v) \geq \frac{1}{4} |v|^2 + mk(1 - \lambda - mk \mu^2)||v|^2 - \frac{1}{2} |mkB(t^m, 0) + \varphi^m|^2,
\end{equation}
i.e., for k sufficiently small such that $1 - \lambda - mk \mu^2 \geq 0$,
\begin{equation}
(6.6) \quad (g(v), v) \geq \frac{1}{4} |v|^2 - \frac{1}{2} |mkB(t^m, 0) + \varphi^m|^2.
\end{equation}
Letting $v \in V_h$ in (6.6) be such that $|v| = \frac{1}{\sqrt{2}} |mkB(t^m, 0) + \varphi^m| + 1$, we have $(g(v), v) > 0$, and we conclude, in view of Lemma 6.1, the existence of a solution $V^m \in V_h$ of (6.5'), provided k is sufficiently small such that $1 - \lambda - mk \mu^2 \geq 0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Uniqueness. Let \(\hat{V}^m \in V_h \) be such that
\[
(6.5')
V^m + mk[A_h \hat{V}^m - \mathcal{B}_h(t^m, \hat{V}^m)] = P_0 \varphi^m.
\]
Subtracting (6.5') from (6.5) and letting \(e^m := V^m - \hat{V}^m \), we obtain
\[
e^m + mkA_h e^m - mk[\mathcal{B}_h(t^m, V^m) - \mathcal{B}_h(t^m, \hat{V}^m)] = 0.
\]
Taking here the inner product with \(e^m \) and using (6.1), we have
\[
|e^m|^2 + mk\|e^m\|^2 - mk(\lambda\|e^m\| + \mu\|e^m\|)\|e^m\| \leq 0,
\]
i.e.,
\[
(6.7)
\frac{1}{2}|e^m|^2 + mk(1 - \lambda - \frac{m\mu^2}{2})\|e^m\|^2 \leq 0.
\]
For \(k \) sufficiently small such that \(1 - \lambda - \frac{m\mu^2}{2} \geq 0 \), we conclude from (6.7) that \(e^m = 0 \), i.e., \(\hat{V}^m = V^m \).

Error estimates. To derive an estimate for \(W^m - V^m \), we need an equation for \(W^m \). For \(\chi \in V_h \) we have
\[
(W^m + mk[A_h W^m - B_h(t^m, W^m)] - P_0 \varphi^m, \chi)
\]
\[
= (W^m, \chi) + mk(AW^m - B'(t^m, u^m)W^m + \kappa W^m, \chi)
\]
\[
- mk(B(t^m, W^m) - B'(t^m, u^m)W^m + \kappa W^m - \varphi^m, \chi),
\]
i.e., in view of the definition of \(R_h(t) \),
\[
(W^m + mk[A_h W^m - B_h(t^m, W^m)] - P_0 \varphi^m, \chi)
\]
\[
= (W^m, \chi) + mk(Au^m - B(t^m, u^m), \chi) + mk\kappa(u^m - W^m, \chi) - (\varphi^m, \chi)
\]
\[
+ mk(B(t^m, u^m) - B'(t^m, W^m) - B'(t^m, u^m)(u^m - W^m), \chi).
\]
Using (6.4) here, we get
\[
(W^m + mk[A_h W^m - B_h(t^m, W^m)] - P_0 \varphi^m, \chi)
\]
\[
= (W^m - u^m, \chi) + (\varphi^m, \chi) + mk\kappa(u^m - W^m, \chi)
\]
\[
+ mk(B(t^m, u^m) - B(t^m, W^m) - B'(t^m, u^m)(u^m - W^m), \chi),
\]
i.e., in view of (5.3), (5.6) and (6.3),
\[
(6.8)
W^m + mk[A_h W^m - B_h(t^m, W^m)] = P_0 \varphi^m + \eta_1^m + k\eta_2^m
\]
with
\[
(6.9)
|\eta_1^m| + \|\eta_2^m\| \leq C(k^p + h^r).
\]
Now let \(\vartheta^m := W^m - V^m \). Subtracting (6.5') from (6.8), we obtain
\[
\vartheta^m + mk\vartheta^m - mk[\mathcal{B}_h(t^m, W^m) - \mathcal{B}_h(t^m, V^m)] = \eta_1^m + k\eta_2^m.
\]
Taking here the inner product with \(\vartheta^m \) and using the fact that \(W^m \in T_u \), we have
\[
|\vartheta^m|^2 + mk\|\vartheta^m\|^2 - mk\|\mathcal{B}(t^m, W^m) - \mathcal{B}(t^m, U^m), \vartheta^m\| = (\eta_1^m, \vartheta^m) + k(\eta_2^m, \vartheta^m),
\]
i.e., in view of (6.1),
\[
|\vartheta^m|^2 + mk(1 - \lambda)\|\vartheta^m\|^2 - \mu mk\|\mathcal{B}(t^m, W^m) - \mathcal{B}(t^m, U^m), \vartheta^m\| \leq |\eta_1^m|^2 + k\|\eta_2^m\|^2 \|\vartheta^m\|.
\]
Now using the algebraic-geometric inequality, we obtain
\[
\frac{1}{4}|\vartheta^m|^2 + k(m - \lambda m - \mu^2 m^2 k - \frac{1}{2}k)\|\vartheta^m\|^2 \leq \frac{1}{2}|\eta_1^m|^2 + \frac{1}{2}\|\eta_2^m\|^2.
\]
Letting k be sufficiently small here such that $m(1 - \lambda) - (\mu^2 m^2 + \frac{1}{2})k \geq c$ with a positive constant c, we easily obtain, in view of (6.9),

$$
(6.10) \quad |\partial^m|^2 + k|\partial^m|^2 \leq C(k^p + h^*)^2.
$$

In view of our mesh condition, it easily follows from (6.10) and (5.3) that $V^m \in T_u$; thus V^m is also a locally unique solution of (6.5). Furthermore, obviously, if (6.10) is satisfied for $m = 1, \ldots, q - 1$ (and $U^0 = W^0$), then (5.10) is also satisfied.

A linear scheme. In the analysis of the linear scheme we will present in the sequel, besides (6.1) and the hypotheses of Section 5, we shall assume three additional natural conditions, two for the nonlinearity B, namely that

$$
(6.11) \quad \|B(t, v) - B(t, w) - B'(t, w)(v - w)\|_* \leq C\|v - w\|^2 \quad \forall v, w \in T_u
$$

and that the operator $A - B'(t, v) + \kappa I$ is, for an appropriate constant κ and $v \in T_u$, positive definite, uniformly in t and v (cf. the hypothesis on $M(t)$ in Section 5) and one analog to (5.3). To formulate the third condition, we let $R_h : V \rightarrow V_h$ denote an “elliptic” projection defined, in terms of the linear operator A only, by

$$
(6.12) \quad P_h AR_h v = P_h Av;
$$

cf. the definition of $R_h(t)$ in Section 5. The assumption then is that R_h satisfies the estimate

$$
(6.13) \quad \|u(t) - R_h u(t)\| \leq Ch^{r - \frac{2}{p}};
$$

cf. (5.3).

We shall linearize the scheme (6.5) by Newton’s method and we will show that, for appropriate starting approximations U^0_m, one Newton iteration suffices to obtain initial approximations U^1_m satisfying (5.10).

We begin with the definition of an appropriate starting approximation U^0_0. Let $T^p_m u^0(0)$ be given by

$$
T^p_m u^0(0) := u^0 + mku^0(0) + \cdots + \frac{(mk)^{p-1}}{(p-1)!}u^{p-1}(0), \quad m = 1, \ldots, q - 1.
$$

We then let $U^0_m := R_h T^p_m u^0(0) \in V_h$—notice that $R_h(t^m)T^p_m u^0(0)$ cannot be computed since the solution at t^m, and consequently $M(t^m)$, is not known—i.e., U^0_m is given by

$$
(6.14) \quad (A_h U^0_m, \chi) = (AT^p_m u^0(0), \chi) \quad \forall \chi \in V_h.
$$

To estimate $U^m - U^0_m$, we let $W^m := R_h u^m$, i.e., W^m is given by

$$
(6.15) \quad (A_h W^m, \chi) = (A u^m, \chi) \quad \forall \chi \in V_h.
$$

Subtracting (6.14) from (6.15), we obtain

$$
(A_h(W^m - U^0_m), \chi) = (A(u^m - T^p_m u^0(0)), \chi) \quad \forall \chi \in V_h.
$$

Letting $\chi := W^m - U^0_m$ here, we get

$$
\|W^m - U^0_m\| \leq \|u^m - T^p_m u^0(0)\|,
$$

and we conclude that

$$
(6.16) \quad \|W^m - U^0_m\| \leq CK^p.
$$

Let us notice here for later use that, in view of (6.13) and (6.16), $U^0_m \in T_u$.

Furthermore,
\[U^m - U_0^m = (U^m - W^m) + (W^m - u^m) + (u^m - \bar{W}^m) + (\bar{W}^m - U_0^m); \]
since, according to (5.3) and (6.13),
\[\|W^m - u^m\| + \|u^m - \bar{W}^m\| \leq Ch^{r-\frac{2}{q}}, \]
in view of (6.10) and (6.16) we get
\[\|U^m - U_0^m\| \leq Ck^{-\frac{1}{2}}(k^p + h^r) + C(k^p + h^{r-\frac{2}{q}}), \]
i.e.,
\[\|U^m - U_0^m\| \leq C(k^p - \frac{1}{2} + h^r k^{-\frac{1}{2}} + h^{r-\frac{2}{q}}). \]

Starting with \(U_0^m \), we let \(U_1^m \in V_h \) be an approximation to \(U^m \) given by performing one iteration with Newton’s method applied to (6.5), i.e., \(U_1^m \) is given by
\[[I + mkA_h - mkB_h(t^m, U_0^m)](U_1^m - U_0^m) + U_0^m + mkA_hU_0^m - mkB_h(t^m, U_0^m) = P_o\varphi^m \]
which can be written in the form
\[[I + mkA_h - mkB_h(t^m, U_0^m)]U_1^m = mkB_h(t^m, U_0^m) + mkB_h(t^m, U_0^m)U_0^m + P_o\varphi^m. \]
Using the fact that \(U_0^m \in T_u \) and the assumption that \(A - B'(t, U_0^m) + \kappa I \) is positive definite, we easily see that \(U_1^m \) is well defined for \(k < \frac{1}{\kappa m} \).

Now let \(e_1^m := U^m - U_1^m \). Subtracting (6.18) from (6.5), we obtain
\[e_1^m + mkA_h e_1^m - mkB_h(t^m, U_0^m)e_1^m \]
\[= mk[B_h(t^m, U^m) - B_h(t^m, U_0^m) - B'_h(t^m, U_0^m)(U^m - U_0^m)], \]
i.e.,
\[(1 - \kappa mk)e_1^m + mk[A_h - B'_h(t^m, U_0^m) + \kappa I]e_1^m \]
\[= mk[B_h(t^m, U^m) - B_h(t^m, U_0^m) - B'_h(t^m, U_0^m)(U^m - U_0^m)]. \]
Taking here the inner product with \(e_1^m \) and using the fact that \(A - B'(t, v) + \kappa I \) is positive definite, uniformly in \(t \) and \(v \), \(v \in T_u \), and \(U^m, U_0^m \in T_u \), and (6.11), we get
\[(1 - \kappa mk)|e_1^m|^2 + cmk\|e_1^m\|^2 \leq Ck\|e_0^m\|^2 \|e_1^m\|, \]
with a positive constant \(c \), i.e., for \(k < \frac{1}{2\kappa m} \)
\[|e_1^m|^2 + k\|e_1^m\|^2 \leq Ck\|e_0^m\|^4. \]
From (6.20) and (6.17) we obtain
\[|e_1^m|^2 + k\|e_1^m\|^2 \leq Ck^{4p-2} + h^4k^{-2} + h^{4r-2d}, \]
i.e.,
\[|e_1^m|^2 + k\|e_1^m\|^2 \leq C(k^{2p} + h^{4r} + h^{2r}) \]
and thus
\[|e_1^m|^2 + k\|e_1^m\|^2 \leq C(k^{2p} + h^{2r}) \]
i.e.,
\[|e_1^m|^2 + k\|e_1^m\|^2 \leq C(k^p + h^{r})^2. \]
From (6.10) and (6.21) we finally conclude

\begin{equation}
|U_m^m - W^m| + \sqrt{k}||U_m^m - W^m|| \leq C(k^p + h^r).
\end{equation}

\textbf{Remark 6.1.} Condition (6.11) can easily be relaxed or modified if one is willing to perform more iterations with Newton’s method in order to obtain starting approximations satisfying the analog of (6.22).

7. Combination of implicit Runge-Kutta schemes and extrapolation

Keeling [5] constructs and analyzes implicit-explicit schemes for semilinear parabolic equations. The linear part of the equation is discretized by implicit Runge-Kutta methods (IRKM) and the nonlinear part by extrapolation from previous time levels. One advantage of the resulting implicit-explicit schemes is that their polynomial order coincides with their order and hence, in contrast to IRKM, they do not suffer from order reduction; a computational advantage of these schemes is that to advance in time linear problems with the same operator for all time levels have to be solved. We will see in the sequel that Keeling’s schemes applied to (1.1) are particular cases of the schemes (1.2). Let us note that in this particular case the results of this paper improve those of [5] in various aspects: we allow stronger nonlinearities, and in particular we have an optimal bound for the stability constant \(\lambda \), and we also get by with milder mesh conditions; cf. also [2] and [1] for concrete parabolic equations.

In this section we will focus on single step schemes for the discretization of the linear part of equation (1.1). Thus we let

\[q = 1; \quad q_1 = 1; \quad i = 0; i = 0; \ldots; q = 2. \]

It is then easily seen that the strong A(0)-stability condition of a consistent scheme described by \((a_0; \ldots; q)\) reads in this case

\begin{equation}
\rho(0) = 1, \quad \rho'(0) < 0, \quad |\rho(x)| < 1 \text{ for } x \in (0, \infty].
\end{equation}

Given an integer \(r \geq 1 \), an \(r \)-stage IRKM is characterized by a set of constants arranged in tableau form

\[
\begin{array}{c|c}
Q & \tau \\
\hline
b^T & \\
\end{array}
\]

with \(Q = (a_{ij}) \in \mathbb{R}^{r \times r}, b = (b_1, \ldots, b_r)^T \) and \(\tau = (\tau_1, \ldots, \tau_r)^T \). Let \(p \geq 1 \) be the order of the IRKM; actually we will only need the relations

\begin{equation}
b^T Q^{\ell-1} e = \frac{1}{\ell!}, \quad \ell = 1, \ldots, p,
\end{equation}

with \(e := (1, \ldots, 1)^T \). For stability purposes, we assume that the IRKM is strongly \(A_0 \)-stable, i.e., for the corresponding rational approximation \(\rho \), \(\rho(z) := 1 - zb^T (I + zQ)^{-1} e \), to the exponential \(e^{-z} \) it holds that

\begin{equation}
\sup_{x \geq x_0} |\rho(x)| < 1 \quad \forall x_0 > 0.
\end{equation}

Let us note that, for \(p \geq 1 \), (7.3) is equivalent to (7.1). Furthermore, we assume that the eigenvalues of \(Q \) have nonnegative real parts, and \(Q \) is invertible, i.e., \(\sigma(Q) \subset \{ z \in \mathbb{C} : \text{Re } z \geq 0, z \neq 0 \} \), with \(\sigma(Q) \) the spectrum of \(Q \).
Following Keeling, we define the extrapolation associated with an \(r \)-stage IRKM of order \(p \) in terms of the constants \(\alpha_{ij}, i = 1, \ldots, r, j = 0, \ldots, p - 1 \), given by
\[
(7.4) \quad \sum_{j=0}^{p-1} j^\ell \alpha_{ij} = (-1)^\ell \ell! \hat{c}_i^T \mathcal{Q}^\ell e, \quad \ell = 0, \ldots, p - 1, i = 1, \ldots, r,
\]
with \(\hat{c}_i \in \mathbb{R}^r, (\hat{c}_i)_j = \delta_{ij} \).

Suppose that approximations \(U^m \) to \(u^m, m = 0, \ldots, n \), have been computed. We introduce the extrapolation operator \(\mathcal{E}^n : V^p \to (V')^r, n \geq p - 1 \), by
\[
(7.5) \quad (\mathcal{E}^n \hat{v})_i := \sum_{j=0}^{p-1} \alpha_{ij} B(t^{n-j}, v^{n-j}), \quad i = 1, \ldots, r,
\]
with \(\hat{v} := (v^n, \ldots, v^{n-p+1})^T \). Also let \(\mathcal{A} : (D(A))^r \to H^r, \mathcal{A} := \text{diag}(A, \ldots, A) \).

Now, Keeling’s scheme applied to (1.1) yields \(U^{n+1} \approx u^{n+1}, n \geq p - 1 \), defined by
\[
(7.6i) \quad U^n = U^n e - k\mathcal{Q}A U^n + k\mathcal{Q} e \hat{U}^n,
(7.6ii) \quad U^{n+1} = (I - b^T \mathcal{Q}^{-1} e) U^n + b^T \mathcal{Q}^{-1} \hat{U}^n,
\]
with \(\hat{U}^n = (U^{n,1}, \ldots, U^{n,r})^T \). We will write this scheme in the form of (1.2) and will show that its order and polynomial order are \(p \). Then, the results of the previous sections apply. First, (7.6) can be written in the form
\[
U^{n+1} = (I - k A b^T (I + k \mathcal{Q} A)^{-1} e) U^n + k b^T (I + k \mathcal{Q} A)^{-1} \mathcal{E}^n \hat{U}^n
= \rho(kA) U^n + k b^T (I + k \mathcal{Q} A)^{-1} \mathcal{E}^n \hat{U}^n
= \rho(kA) U^n + k b^T (I + k \mathcal{Q} A)^{-1} \sum_{i=0}^{p-1} \alpha_i^T B(t^{n-i}, U^{n-i})
\]
with \(\alpha_i := (\alpha_{1i}, \ldots, \alpha_{ri})^T \). Therefore,
\[
U^{n+p} = \rho(kA) U^{n+p-1} + k b^T (I + k \mathcal{Q} A)^{-1} \sum_{i=0}^{p-1} \alpha_i^T B(t^{n+p-1-i}, U^{n+p-1-i}),
\]
i.e.,
\[
(7.7) \quad U^{n+p} = \rho(kA) U^{n+p-1} + k b^T (I + k \mathcal{Q} A)^{-1} \sum_{i=0}^{p-1} \alpha_i^T B(t^{n+i}, U^{n+i}).
\]
With \(\sigma_i(x) := b^T (I + x \mathcal{Q})^{-1} \alpha_i^{p-1-i}, i = 0, \ldots, p - 1 \), (7.7) can be written as
\[
(7.8) \quad U^{n+p} - \rho(kA) U^{n+p-1} = k \sum_{i=0}^{p-1} \sigma_i(kA) B(t^{n+i}, U^{n+i}),
\]
which is of the form (1.2) with \(q = p \).

Next, let us show that the polynomial order of the scheme (7.8) is \(p \). First, let us rewrite (7.4): Let \(\mathcal{A} \) denote the \(p \times r \) matrix with entries \(\alpha_{ij}, f_\ell := (0, 1^\ell, \ldots, (p-1)^\ell)^T, \) and \(f_0 := (1, \ldots, 1)^T \). Then, (7.4) can be written in the form
\[
(7.4') \quad \mathcal{A} f_\ell = (-1)^\ell \ell! \mathcal{Q}^\ell e, \quad \ell = 0, 1, \ldots, p - 1.
\]
Therefore,
\[
-\ell \mathcal{A} f_{\ell-1} + x \mathcal{A} f_\ell = (-1)^\ell (\ell+1) \mathcal{Q}^{\ell+1} e,
\]
and, using the notation of Section 1,
\[
\varphi_{t,p}(x) = E_0(1, x, v_{t,p}) = 1 - (-1)^{\ell}b^T(I + x\mathcal{O})^{-1}(-\ell\mathfrak{A}f_{\ell-1} + x\mathfrak{A}f_{\ell}) = 1 - \ell!b^T\mathcal{O}^{\ell-1}e.
\]
Using (7.2) here, we see that \(\varphi_{t,p} = 0\) for \(1 \leq \ell \leq p - 1\). For \(\ell = 0\), since \(v_{0,p} = 1\) and \(\mathfrak{A}f_0 = e\), we have
\[
\varphi_{0,p}(x) = E_0(1, x, v_{0,p}) = 1 - \rho(x) - xb^T(I + x\mathcal{O})^{-1}e = 0.
\]
Hence, in view of (\(\tilde{C}_p^2\)), the polynomial order of the method is \(p\).

Similarly, we have \(\varphi_{p,p}(0) = 0\), and thus \(\varphi_{p,p}(x) = O(x)\); consequently \(\varphi_p(x) = O(x)\), and we conclude that the order of the scheme is \(p\).

Let us also note that letting \(q = p\), letting the \(\rho_i\)’s be as in the beginning of this section and determining the \(\sigma_i\)’s from (1.12) is an alternative way leading to Keeling’s schemes.

Remark 7.1. The strong \(A(0)\)-stability condition cannot be relaxed to \(A(0)\)-stability, because then \(K_{(p,q)}\) may be infinite and, consequently, our stability condition (1.5) may deteriorate. We demonstrate this with an example. Let us consider the one-stage Gauss-Legendre Runge-Kutta method, i.e., the midpoint scheme; the scheme is described by the tableau

\[
\begin{array}{c|c}
\frac{1}{2} & \frac{1}{2} \\
1 & \\
\end{array}
\]

and the corresponding rational approximation \(\rho\) to the exponential is given by
\[
\rho(x) = (1 - \frac{x}{2})/(1 + \frac{x}{2}).
\]
The order of the method is two, and according to (7.4) we have \(\alpha_{10} = 3/2, \alpha_{11} = -1/2\). Therefore
\[
\sigma_0(x) = -\frac{1}{2} \frac{1}{1 + \frac{x}{2}}, \quad \sigma_1(x) = \frac{3}{2} \frac{1}{1 + \frac{x}{2}}.
\]
Thus, we choose \(q = 2\), and the implicit scheme is described by the rational functions \((\rho_0, \rho_1, \rho_2)\) with \(\rho_0 = 0, \rho_1 = -\rho, \rho_2 = 1\). In this case we have
\[
\rho(x, \zeta) = \frac{\zeta}{1 + \frac{x}{2}}(1 - \frac{x}{2}) + (1 + \frac{x}{2})\zeta, \quad \sigma(x, \zeta) = \frac{1}{2(1 + \frac{x}{2})}(-1 + 3\zeta).
\]
Hence,
\[
\max_{\zeta \in S_1} \left| \frac{x\sigma(x, \zeta)}{\rho(x, \zeta)} \right| = \left| \frac{x\sigma(x, -1)}{\rho(x, -1)} \right| = x,
\]
and thus \(K_{(p,q)} = \infty\).

Remark 7.2. Assume that \(\rho_0, \ldots, \rho_{q-1}\) vanish at infinity; this means in the case of implicit multistep schemes that \(\beta_0 = \cdots = \beta_{q-1} = 0\), which holds for the BDF schemes of order up to six, and for IRKM that the corresponding rational approximation \(\rho\) vanishes at infinity. Then, the argument showing \(K_2 < \infty\) also shows that \(N_1, N_1 = \max_{0 \leq \ell \leq q-1} \sup_{x > 0} x^q \int_0^1 x \left| \delta_j(e^{-2\pi\ell t}, x) \right|^2 dt, \) is finite. As a consequence, (2.7i) can be replaced by
\[
(2.7'i) \quad k \sum_{\ell=q}^{n} \|\theta_2^\ell\|^2 \leq qN_1 \sum_{j=0}^{q-1} |\theta_2^j|^2.
\]
Assume now that (1.3) is satisfied with $\lambda = 0$. Then, in view of (2.7i), our analysis yields

$$\left| \partial^n \right|^2 + k \sum_{\ell=q}^{n} \| \partial^\ell \|^2 \leq C e^{\mu^2 t} \left\{ \sum_{j=0}^{q-1} |\partial^j|^2 + k \sum_{\ell=0}^{n-q} \| E_h(t^\ell) \|^2 \right\}$$

instead of (5.16); this leads to the error estimate (5.11) under the following relaxed hypothesis on the starting approximations

$$\max_{0 \leq j \leq q-1} |W^j - U^j| \leq C(k^p + h^r) \quad \text{and} \quad U^0, \ldots, U^{q-1} \in T_u.$$

Let us also note that conversely $\tilde{N}_1 < \infty$ implies that $\rho_0, \ldots, \rho_{q-1}$ vanish at infinity. Consequently, an inequality of the form (2.7i) with a finite constant is only valid for a subclass of the schemes considered in this paper.

References

Computer Science Department, University of Ioannina, 451 10 Ioannina, Greece

E-mail address: akrivis@cs.uoi.gr

IRMAR, Université de Rennes I, Campus de Beaulieu, F-35042 Rennes, France

E-mail address: michel.crouzeix@univ-rennes1.fr