Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits


Authors: Xiaobing Feng and Andreas Prohl
Journal: Math. Comp. 73 (2004), 541-567
MSC (2000): Primary 65M60, 65M12, 65M15, 35B25, 35K57, 35Q99
DOI: https://doi.org/10.1090/S0025-5718-03-01588-6
Published electronically: July 28, 2003
MathSciNet review: 2028419
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose and analyze a fully discrete finite element scheme for the phase field model describing the solidification process in materials science. The primary goal of this paper is to establish some useful a priori error estimates for the proposed numerical method, in particular, by focusing on the dependence of the error bounds on the parameter $\varepsilon$, known as the measure of the interface thickness. Optimal order error bounds are shown for the fully discrete scheme under some reasonable constraints on the mesh size $h$ and the time step size $k$. In particular, it is shown that all error bounds depend on $\frac{1}{\varepsilon}$ only in some lower polynomial order for small $\varepsilon$. The cruxes of the analysis are to establish stability estimates for the discrete solutions, to use a spectrum estimate result of Chen, and to establish a discrete counterpart of it for a linearized phase field operator to handle the nonlinear effect. Finally, as a nontrivial byproduct, the error estimates are used to establish convergence of the solution of the fully discrete scheme to solutions of the sharp interface limits of the phase field model under different scaling in its coefficients. The sharp interface limits include the classical Stefan problem, the generalized Stefan problems with surface tension and surface kinetics, the motion by mean curvature flow, and the Hele-Shaw model.


References [Enhancements On Off] (What's this?)

  • 1. R. A. Adams.
    Sobolev Spaces.
    Academic Press, New York, 1975. MR 56:9247
  • 2. N. D. Alikakos and P. W. Bates.
    On the singular limit in a phase field model of phase transitions.
    Ann. Inst. H. Poincaré Anal. Non Linéaire, 5(2):141-178, 1988. MR 89h:35109
  • 3. N. D. Alikakos, P. W. Bates, and X. Chen.
    Convergence of the Cahn-Hilliard equation to the Hele-Shaw model.
    Arch. Rational Mech. Anal., 128(2):165-205, 1994. MR 97b:35174
  • 4. S. Allen and J. W. Cahn.
    A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening.
    Acta Metall., 27:1084-1095, 1979.
  • 5. D. M. Anderson, G. B. McFadden, and A. A. Wheeler.
    A phase-field model of solidification with convection.
    Phys. D, 135(1-2):175-194, 2000. MR 2000j:80004
  • 6. P. W. Bates, P. C. Fife, R. A. Gardner, and C. K. R. T. Jones.
    Phase field models for hypercooled solidification.
    Phys. D, 104(1):1-31, 1997. MR 97m:80011
  • 7. J. F. Blowey and C. M. Elliott.
    A phase-field model with a double obstacle potential.
    In G. Buttazzo and A. Visintin, editors, Motion by mean curvature and related topics (Trento, 1992), pages 1-22. de Gruyter, Berlin, 1994. MR 95d:35093
  • 8. S. C. Brenner and L. R. Scott.
    The mathematical theory of finite element methods.
    Springer-Verlag, New York, 1994. MR 95f:65001
  • 9. G. Caginalp.
    An analysis of a phase field model of a free boundary.
    Arch. Rational Mech. Anal., 92(3):205-245, 1986. MR 87c:80011
  • 10. G. Caginalp.
    Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations.
    Phys. Rev. A (3), 39(11):5887-5896, 1989. MR 90c:80004
  • 11. G. Caginalp and X. Chen.
    Convergence of the phase field model to its sharp interface limits.
    European J. Appl. Math., 9(4):417-445, 1998. MR 99i:80011
  • 12. G. Caginalp and J.-T. Lin.
    A numerical analysis of an anisotropic phase field model.
    IMA J. Appl. Math., 39(1):51-66, 1987. MR 90e:80005
  • 13. G. Caginalp and E. Socolovsky.
    Phase field computations of single-needle crystals, crystal growth, and motion by mean curvature.
    SIAM J. Sci. Comput., 15(1):106-126, 1994. MR 94k:65122
  • 14. J. W. Cahn and J. E. Hilliard.
    Free energy of a nonuniform system I. Interfacial free energy.
    J. Chem. Phys., 28:258-267, 1958.
  • 15. X. Chen.
    Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces.
    Comm. Partial Differential Equations, 19(7-8):1371-1395, 1994. MR 95f:35023
  • 16. X. Chen, J. Hong, and F. Yi.
    Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem.
    Comm. Partial Differential Equations, 21(11-12):1705-1727, 1996. MR 97h:35238
  • 17. Z. M. Chen and K.-H. Hoffmann.
    An error estimate for a finite-element scheme for a phase field model.
    IMA J. Numer. Anal., 14(2):243-255, 1994. MR 95c:65152
  • 18. P. G. Ciarlet.
    The finite element method for elliptic problems.
    North-Holland Publishing Co., Amsterdam, 1978.
    Studies in Mathematics and its Applications, Vol. 4. MR 58:25001
  • 19. J. B. Collins and H. Levine.
    Diffuse interface model of diffusion-limited crystal growth.
    Phys. Rev. B, 31:6119-6122, 1985.
  • 20. P. de Mottoni and M. Schatzman.
    Geometrical evolution of developed interfaces.
    Trans. Amer. Math. Soc., 347(5):1533-1589, 1995. MR 2000a:35022
  • 21. C. M. Elliott and S. M. Zheng.
    Global existence and stability of solutions to the phase field equations.
    In Free Boundary Value Problems (Oberwolfach, 1989), pages 46-58. Birkhäuser, Basel, 1990. MR 92g:35214
  • 22. L. C. Evans, H. M. Soner, and P. E. Souganidis.
    Phase transitions and generalized motion by mean curvature.
    Comm. Pure Appl. Math., 45(9):1097-1123, 1992. MR 93g:35064
  • 23. X. Feng and A. Prohl.
    Numerical analysis of the Allen-Cahn equation and approximation of the mean curvature flows.
    Numer. Math., 94(1):33-65, 2003.
  • 24. X. Feng and A. Prohl. Error Analysis of a Mixed Finite Element Method for the Cahn-Hilliard Equation, Numer. Math. (submitted), IMA-Preprint #1798, 2001.
  • 25. X. Feng and A. Prohl.
    Numerical Analysis of the Cahn-Hilliard Equation and Approximation for the Hele-Shaw problem, Interfaces and Free Boundaries (submitted), IMA-Preprint #1799, 2001.
  • 26. X. Feng and A. Prohl.
    Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interphase limits.
    IMA-Preprint #1817, 2001.
  • 27. P. Fife.
    Models for phase separation and their mathematics.
    Electronic J. of Diff. Eqns, 2000(48):1-26, 2000. MR 2001k:35147
  • 28. G. Fix.
    Phase field method for free boundary problems.
    In A. Fasano and M. Primicerio, editors, Free Boundary Problems, pages 580-589. Pitman, London, 1983. MR 84h:00003
  • 29. G. J. Fix and J. T. Lin.
    Numerical simulations of nonlinear phase transitions. I. The isotropic case.
    Nonlinear Anal., 12(8):811-823, 1988. MR 89h:80009
  • 30. J. S. Langer.
    Models of patten formation in first-order phase transitions.
    In Directions in Condensed Matter Physics, pages 164-186. World Science Publishers, 1986. MR 88a:82023
  • 31. J. T. Lin.
    The numerical analysis of a phase field model in moving boundary problems.
    SIAM J. Numer. Anal., 25(5):1015-1031, 1988. MR 89h:65161
  • 32. G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell, and R. F. Sekerka.
    Phase-field models for anisotropic interfaces.
    Phys. Rev. E (3), 48(3):2016-2024, 1993.
  • 33. W. W. Mullins and J. Sekerka.
    Morphological stability of a particle growing by diffusion or heat flow.
    J. Appl. Math., 34:322-329, 1963.
  • 34. O. Penrose and P. C. Fife.
    On the relation between the standard phase-field model and a ``thermodynamically consistent'' phase-field model.
    Phys. D, 69(1-2):107-113, 1993.
  • 35. N. Provatas, N. Goldenfeld, and J. Dantzig.
    Adaptive mesh refinement computation of solidification microstructures using dynamic data structures.
    J. Comput. Phys., 148(1):265-290, 1999. MR 99h:80012
  • 36. H. M. Soner.
    Convergence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling.
    Arch. Rational Mech. Anal., 131(2):139-197, 1995. MR 97d:80007
  • 37. B. E. E. Stoth.
    A sharp interface limit of the phase field equations: one-dimensional and axisymmetric.
    European J. Appl. Math., 7(6):603-633, 1996. MR 98i:80008
  • 38. X. Y. Yue.
    Finite element analysis of the phase field model with nonsmooth initial data.
    Acta Math. Appl. Sinica, 19(1):15-24, 1996. MR 97d:65045

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65M60, 65M12, 65M15, 35B25, 35K57, 35Q99

Retrieve articles in all journals with MSC (2000): 65M60, 65M12, 65M15, 35B25, 35K57, 35Q99


Additional Information

Xiaobing Feng
Affiliation: Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996
Email: xfeng@math.utk.edu

Andreas Prohl
Affiliation: Department of Mathematics, ETH, CH-8092 Zürich, Switzerland
Email: apr@math.ethz.ch

DOI: https://doi.org/10.1090/S0025-5718-03-01588-6
Keywords: Phase field model, Allen-Cahn equation, Cahn-Hilliard equation, Stefan problem, motion by mean curvature, Hele-Shaw model, fully discrete finite element method
Received by editor(s): November 16, 2001
Received by editor(s) in revised form: October 30, 2002
Published electronically: July 28, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society