Finite difference method for a combustion model

Author:
Lung-An Ying

Journal:
Math. Comp. **73** (2004), 595-611

MSC (2000):
Primary 65M06, 35L65, 76M20, 80A25

Published electronically:
October 27, 2003

MathSciNet review:
2031396

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a projection and upwind finite difference scheme for a combustion model problem. Convergence to weak solutions is proved under the Courant-Friedrichs-Lewy condition. More assumptions are given on the ignition temperature; then convergence to strong detonation wave solutions or to weak detonation wave solutions is proved.

**1.**Weizhu Bao and Shi Jin,*The random projection method for hyperbolic conservation laws with stiff reaction terms*, J. Comput. Phys.**163**(2000), no. 1, 216–248. MR**1777727**, 10.1006/jcph.2000.6572**2.**A. C. Berkenbosch, E. F. Kaasschieter, and R. Klein,*Detonation capturing for stiff combustion chemistry*, Combust. Theory Model.**2**(1998), no. 3, 313–348. MR**1693410**, 10.1088/1364-7830/2/3/006**3.**R. Courant and K. O. Friedrichs,*Supersonic Flow and Shock Waves*, Interscience Publishers, Inc., New York, N. Y., 1948. MR**0029615****4.**Michael G. Crandall and Andrew Majda,*Monotone difference approximations for scalar conservation laws*, Math. Comp.**34**(1980), no. 149, 1–21. MR**551288**, 10.1090/S0025-5718-1980-0551288-3**5.**Phillip Colella, Andrew Majda, and Victor Roytburd,*Theoretical and numerical structure for reacting shock waves*, SIAM J. Sci. Statist. Comput.**7**(1986), no. 4, 1059–1080. MR**857783**, 10.1137/0907073**6.**C. M. Dafermos,*Generalized characteristics and the structure of solutions of hyperbolic conservation laws*, Indiana Univ. Math. J.**26**(1977), no. 6, 1097–1119. MR**0457947****7.**R. J. DiPerna,*Convergence of approximate solutions to conservation laws*, Arch. Rational Mech. Anal.**82**(1983), no. 1, 27–70. MR**684413**, 10.1007/BF00251724**8.**B. Engquist and B. Sjogreen, Robust Difference Approximations of Stiff Inviscid Detonation Waves, CAM Report 91-03 (UCLA 1991).**9.**Lawrence C. Evans,*Weak convergence methods for nonlinear partial differential equations*, CBMS Regional Conference Series in Mathematics, vol. 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR**1034481****10.**D. F. Griffiths, A. M. Stuart, and H. C. Yee,*Numerical wave propagation in an advection equation with a nonlinear source term*, SIAM J. Numer. Anal.**29**(1992), no. 5, 1244–1260. MR**1182730**, 10.1137/0729074**11.**R. J. LeVeque and H. C. Yee,*A study of numerical methods for hyperbolic conservation laws with stiff source terms*, J. Comput. Phys.**86**(1990), no. 1, 187–210. MR**1033905**, 10.1016/0021-9991(90)90097-K**12.**Andrew Majda,*A qualitative model for dynamic combustion*, SIAM J. Appl. Math.**41**(1981), no. 1, 70–93. MR**622874**, 10.1137/0141006**13.**Richard B. Pember,*Numerical methods for hyperbolic conservation laws with stiff relaxation. I. Spurious solutions*, SIAM J. Appl. Math.**53**(1993), no. 5, 1293–1330. MR**1239408**, 10.1137/0153062**14.**Lung An Ying and Zhen Huan Teng,*A hyperbolic model of combustion*, Nonlinear partial differential equations in applied science (Tokyo, 1982), North-Holland Math. Stud., vol. 81, North-Holland, Amsterdam, 1983, pp. 409–434. MR**730256**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65M06,
35L65,
76M20,
80A25

Retrieve articles in all journals with MSC (2000): 65M06, 35L65, 76M20, 80A25

Additional Information

**Lung-An Ying**

Affiliation:
School of Mathematical Sciences, Peking University, People’s Republic of China

DOI:
http://dx.doi.org/10.1090/S0025-5718-03-01601-6

Keywords:
Combustion,
finite difference method,
detonation wave,
stiff equation

Received by editor(s):
November 12, 2001

Received by editor(s) in revised form:
October 22, 2002

Published electronically:
October 27, 2003

Article copyright:
© Copyright 2003
American Mathematical Society