Finite difference method for a combustion model

Author:
Lung-An Ying

Journal:
Math. Comp. **73** (2004), 595-611

MSC (2000):
Primary 65M06, 35L65, 76M20, 80A25

DOI:
https://doi.org/10.1090/S0025-5718-03-01601-6

Published electronically:
October 27, 2003

MathSciNet review:
2031396

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study a projection and upwind finite difference scheme for a combustion model problem. Convergence to weak solutions is proved under the Courant-Friedrichs-Lewy condition. More assumptions are given on the ignition temperature; then convergence to strong detonation wave solutions or to weak detonation wave solutions is proved.

**1.**W. Bao and S. Jin, The random projection method for hyperbolic conservation laws with stiff reaction terms, J. Comput. Phys., 163, 216-248, 2000. MR**2001d:76091****2.**A. C. Berkenbosch, E. F. Kaasschieter and R. Klein, Detonation capturing for stiff combustion chemistry, Combust. Theory Modelling, 2, 313-348, 1998. MR**2000b:80008****3.**R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers Inc. New York, 1948. MR**10:637c****4.**M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp., 34, 1-21, 1980. MR**81b:65079****5.**P. Colella, A. Majda and V. Roytburd, Theoretical and numerical structure for reacting shock waves, SIAM J. Sci. Stat. Comput., 7, 1059-1080, 1986. MR**87i:76037****6.**C. Dafermos, Generalized charateristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. J., 26, 1097-1119, 1977. MR**56:16151****7.**R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal., 82, 27-70, 1983. MR**84k:35091****8.**B. Engquist and B. Sjogreen, Robust Difference Approximations of Stiff Inviscid Detonation Waves, CAM Report 91-03 (UCLA 1991).**9.**L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conference Series in Mathematics, 74, American Mathematical Society, 1988. MR**91a:35009****10.**D. F. Griffiths, A. M. Stuart and H. C. Yee, Numerical wave propagation in an advection equation with a nonlinear source term, SIAM J. Numer. Anal., 29, 1244-1260, 1992. MR**93h:65111****11.**R. J. LeVeque and H. C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. Comput. Phys., 86, 187-210, 1990. MR**90k:76009****12.**A. Majda, A qualitative model for dynamic combustion, SIAM J. Appl. Math., 41, 70-93, 1981. MR**82j:35096****13.**R. B. Pember, Numerical methods for hyperbolic conservation laws with stiff relaxation, I: Spurious solutions, SIAM J. Appl. Math., 53, 1293-1330, 1993. MR**95a:65173****14.**L.-a. Ying and Z.-h. Teng, A hyperbolic model of combustion, North Holland Mathematics Studies, 81, North-Holland, Amsterdam, and Kinokuniya, Tokyo, 409-434, 1983. MR**86a:35092**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65M06,
35L65,
76M20,
80A25

Retrieve articles in all journals with MSC (2000): 65M06, 35L65, 76M20, 80A25

Additional Information

**Lung-An Ying**

Affiliation:
School of Mathematical Sciences, Peking University, People’s Republic of China

DOI:
https://doi.org/10.1090/S0025-5718-03-01601-6

Keywords:
Combustion,
finite difference method,
detonation wave,
stiff equation

Received by editor(s):
November 12, 2001

Received by editor(s) in revised form:
October 22, 2002

Published electronically:
October 27, 2003

Article copyright:
© Copyright 2003
American Mathematical Society