Recurrence relations and convergence theory of the generalized polar decomposition on Lie groups

Author:
Antonella Zanna

Journal:
Math. Comp. **73** (2004), 761-776

MSC (2000):
Primary 51A50; Secondary 65L99, 58A99

Published electronically:
November 5, 2003

MathSciNet review:
2031405

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The subject matter of this paper is the analysis of some issues related to *generalized polar decompositions* on Lie groups. This decomposition, depending on an involutive automorphism , is equivalent to a factorization of , being a Lie group, as with and , and was recently discussed by Munthe-Kaas, Quispel and Zanna together with its many applications to numerical analysis. It turns out that, contrary to , an analysis of is a very complicated task. In this paper we derive the series expansion for , obtaining an explicit recurrence relation that completely defines the function in terms of projections on a Lie triple system and a subalgebra of the Lie algebra , and obtain bounds on its region of analyticity. The results presented in this paper have direct application, among others, to linear algebra, integration of differential equations and approximation of the exponential.

**1.***Handbook of mathematical functions, with formulas, graphs, and mathematical tables*, Edited by Milton Abramowitz and Irene A. Stegun, Dover Publications, Inc., New York, 1966. MR**0208797****2.**S. Blanes, F. Casas, J. A. Oteo, and J. Ros,*Magnus and Fer expansions for matrix differential equations: the convergence problem*, J. Phys. A**31**(1998), no. 1, 259–268. MR**1620328**, 10.1088/0305-4470/31/1/023**3.**R. V. Chacon and A. T. Fomenko,*Recursion formulas for the Lie integral*, Adv. Math.**88**(1991), no. 2, 200–257. MR**1120613**, 10.1016/0001-8708(91)90008-U**4.**Sigurdur Helgason,*Differential geometry, Lie groups, and symmetric spaces*, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**514561****5.**Roger A. Horn and Charles R. Johnson,*Topics in matrix analysis*, Cambridge University Press, Cambridge, 1991. MR**1091716****6.**Arieh Iserles,*On the discretization of double-bracket flows*, Found. Comput. Math.**2**(2002), no. 3, 305–329. MR**1907383**, 10.1007/s102080010024**7.**Arieh Iserles, Robert McLachlan, and Antonella Zanna,*Approximately preserving symmetries in the numerical integration of ordinary differential equations*, European J. Appl. Math.**10**(1999), no. 5, 419–445. MR**1727840**, 10.1017/S0956792599003927**8.**Arieh Iserles, Hans Z. Munthe-Kaas, Syvert P. Nørsett, and Antonella Zanna,*Lie-group methods*, Acta numerica, 2000, Acta Numer., vol. 9, Cambridge Univ. Press, Cambridge, 2000, pp. 215–365. MR**1883629**, 10.1017/S0962492900002154**9.**A. Iserles and S. P. Nørsett,*On the solution of linear differential equations in Lie groups*, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.**357**(1999), no. 1754, 983–1019. MR**1694700**, 10.1098/rsta.1999.0362**10.**A. Iserles and A. Zanna,*Efficient computation of the matrix exponential by generalized polar decompositions*, D.A.M.T.P. Technical Report NA2003/02, University of Cambridge, U.K. To appear in SIAM J. Numer. Anal.**11.**Ottmar Loos,*Symmetric spaces. I: General theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR**0239005****12.**Wilhelm Magnus,*On the exponential solution of differential equations for a linear operator*, Comm. Pure Appl. Math.**7**(1954), 649–673. MR**0067873****13.**R. I. McLachlan, G. R. W. Quispel, and G. S. Turner,*Numerical integrators that preserve symmetries and reversing symmetries*, SIAM J. Numer. Anal.**35**(1998), no. 2, 586–599. MR**1618858**, 10.1137/S0036142995295807**14.**H. Munthe-Kaas, G. R. Quispel, and A. Zanna,*Application of symmetric spaces and Lie triple systems in Numerical Analysis*, Tech. Report 217, Department of Informatics, University of Bergen, Norway, 2001.**15.**H. Z. Munthe-Kaas, G. R. W. Quispel, and A. Zanna,*Generalized polar decompositions on Lie groups with involutive automorphisms*, Found. Comput. Math.**1**(2001), no. 3, 297–324. MR**1838757**, 10.1007/s102080010012**16.**A. Zanna and H. Z. Munthe-Kaas,*Generalized polar decompositions for the approximation of the matrix exponential*, SIAM J. Matrix Anal. Appl.**23**(2001/02), no. 3, 840–862 (electronic). MR**1896821**, 10.1137/S0895479800377551**17.**S. Reich,*Dynamical systems, numerical integration, and exponentially small estimates*, Habilitationsschrift, 1998.**18.**V. S. Varadarajan,*Lie groups, Lie algebras, and their representations*, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR**746308**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
51A50,
65L99,
58A99

Retrieve articles in all journals with MSC (2000): 51A50, 65L99, 58A99

Additional Information

**Antonella Zanna**

Affiliation:
Institutt for informatikk, University of Bergen, Høyteknologisenteret, Thormøhlensgate 55, N-5020 Bergen, Norway

Email:
anto@ii.uib.no

DOI:
https://doi.org/10.1090/S0025-5718-03-01602-8

Keywords:
Lie group,
Lie algebra,
generalized polar decomposition,
generalized Cartan decomposition

Received by editor(s):
September 5, 2001

Received by editor(s) in revised form:
October 1, 2002

Published electronically:
November 5, 2003

Article copyright:
© Copyright 2003
American Mathematical Society