Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Sequential and parallel synchronous alternating iterative methods


Authors: Joan-Josep Climent, Carmen Perea, Leandro Tortosa and Antonio Zamora
Journal: Math. Comp. 73 (2004), 691-717
MSC (2000): Primary 65F10, 65F15
Published electronically: November 24, 2003
MathSciNet review: 2031401
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The so-called parallel multisplitting nonstationary iterative Model A was introduced by Bru, Elsner, and Neumann [Linear Algebra and its Applications 103:175-192 (1988)] for solving a nonsingular linear system $A\mbox{\mathversion{bold} $x$ } =\mbox{\mathversion{bold} $b$ }$ using a weak nonnegative multisplitting of the first type. In this paper new results are introduced when $A$ is a monotone matrix using a weak nonnegative multisplitting of the second type and when $A$ is a symmetric positive definite matrix using a $P$-regular multisplitting. Also, nonstationary alternating iterative methods are studied. Finally, combining Model A and alternating iterative methods, two new models of parallel multisplitting nonstationary iterations are introduced. When matrix $A$ is monotone and the multisplittings are weak nonnegative of the first or of the second type, both models lead to convergent schemes. Also, when matrix $A$ is symmetric positive definite and the multisplittings are $P$-regular, the schemes are also convergent.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65F10, 65F15

Retrieve articles in all journals with MSC (2000): 65F10, 65F15


Additional Information

Joan-Josep Climent
Affiliation: Departament de Ciència de la Computació i Intel$⋅$ligència Artificial, Universitat d’Alacant, Ap. Correus 99, E–03080 Alacant, Spain
Email: jcliment@dccia.ua.es

Carmen Perea
Affiliation: Departamento de Estadística y Matemática Aplicada, Universidad Miguel Hernández, Escuela Politécnica Superior de Orihuela, E-03550, Orihuela, Spain
Email: perea@umh.es

Leandro Tortosa
Affiliation: Departament de Ciència de la Computació i Intel$⋅$ligència Artificial, Universitat d’Alacant, Ap. Correus 99, E–03080 Alacant, Spain
Email: tortosa@dccia.ua.es

Antonio Zamora
Affiliation: Departament de Ciència de la Computació i Intel$⋅$ligència Artificial, Universitat d’Alacant, Ap. Correus 99, E–03080 Alacant, Spain
Email: zamora@dccia.ua.es

DOI: http://dx.doi.org/10.1090/S0025-5718-03-01607-7
PII: S 0025-5718(03)01607-7
Keywords: Nonsingular matrix, iterative method, spectral radius, splitting, multisplitting, alternating method, stationary method, nonstationary method, convergence conditions, comparison conditions
Received by editor(s): July 9, 2001
Received by editor(s) in revised form: November 13, 2002
Published electronically: November 24, 2003
Article copyright: © Copyright 2003 American Mathematical Society