ALL FIRST-ORDER AVERAGING TECHNIQUES
FOR A POSTERIORI FINITE ELEMENT ERROR CONTROL
ON UNSTRUCTURED GRIDS
ARE EFFICIENT AND RELIABLE

C. CARSTENSEN

Abstract. All first-order averaging or gradient-recovery operators for lowest-order finite element methods are shown to allow for an efficient a posteriori error estimation in an isotropic, elliptic model problem in a bounded Lipschitz domain \(\Omega \) in \(\mathbb{R}^d \). Given a piecewise constant discrete flux \(p_h \in P_h \) (that is the gradient of a discrete displacement) as an approximation to the unknown exact flux \(p \) (that is the gradient of the exact displacement), recent results verify efficiency and reliability of

\[
\eta_M := \min \{ \| p_h - q_h \|_{L^2(\Omega)} : q_h \in Q_h \}
\]

in the sense that \(\eta_M \) is a lower and upper bound of the flux error \(\| p - p_h \|_{L^2(\Omega)} \) up to multiplicative constants and higher-order terms. The averaging space \(Q_h \) consists of piecewise polynomial and globally continuous finite element functions in \(d \) components with carefully designed boundary conditions. The minimal value \(\eta_M \) is frequently replaced by some averaging operator \(A : P_h \rightarrow Q_h \) applied within a simple post-processing to \(p_h \). The result \(q_h := Ap_h \in Q_h \) provides a reliable error bound with \(\eta_M \leq \eta_A := \| p - Ap_h \|_{L^2(\Omega)} \).

This paper establishes \(\eta_A \leq C_{\text{eff}} \eta_M \) and so equivalence of \(\eta_M \) and \(\eta_A \). This implies efficiency of \(\eta_A \) for a large class of patchwise averaging techniques which includes the ZZ-gradient-recovery technique. The bound \(C_{\text{eff}} \leq 3.88 \) established for tetrahedral \(P_1 \) finite elements appears striking in that the shape of the elements does not enter: The equivalence \(\eta_A \approx \eta_M \) is robust with respect to anisotropic meshes. The main arguments in the proof are Ascoli’s lemma, a strengthened Cauchy inequality, and elementary calculations with mass matrices.

1. Introduction

Suppose \(p_h \) is the discrete flux obtained from a conforming, nonconforming, or mixed low-order finite element method (FEM) based on a regular triangulation \(\mathcal{T} \) of the domain \(\Omega \). That is, \(p_h \) is the piecewise polynomial but globally discontinuous elementwise gradient of the finite element displacement approximations \(u_h \) or a discrete flux variable (for a mixed FEM) that approximates the unknown exact flux \(p \). It is the aim of a posteriori error control to bound the error \(\| p - p_h \|_{L^2(\Omega)} \) from above and below by computable estimators \[\text{AO, BS, V} \]. It has recently been proven for several examples [CB, BCT, CF3, CF4] that the error \(\| p - p_h \|_{L^2(\Omega)} \) in

Received by the editor July 26, 2002 and, in revised form, January 1, 2003.
2000 Mathematics Subject Classification. Primary 65N30; Secondary 65N15.
Key words and phrases. A posteriori error estimate, efficiency, finite element method, gradient recovery, averaging operator, mixed finite element method, nonconforming finite element method.

©2003 American Mathematical Society
second-order elliptic boundary value problems is bounded by \(\| p_h - q_h \|_{L^2(\Omega)} \) for any continuous and piecewise polynomial \(q_h \) in the sense that
\[
\| p - p_h \|_{L^2(\Omega)} \leq C_{rel} \| p_h - q_h \|_{L^2(\Omega)} + \text{h.o.t.}
\]
The boundary values are included in the set \(Q_h \) of possible averages \(q_h \). The surprising aspect is that all averaging techniques which, given \(p_h \), compute \(q_h \in Q_h \) are reliable in the sense that
\[
\| p - p_h \|_{L^2(\Omega)} \leq C_{rel} \eta_M + \text{h.o.t.} \quad \text{for} \quad \eta_M := \min_{q_h \in Q_h} \| p_h - q_h \|_{L^2(\Omega)}.
\]
The minimum \(\eta_M \) is frequently replaced by an upper bound \(\eta_A \),
\[
\eta_M \leq \eta_A := \| p_h - Ap_h \|_{L^2(\Omega)},
\]
where \(Ap_h \in Q_h \) is computed with some local averaging operator \(A \). One striking feature of \(\eta_M \) is its immediate efficiency,
\[
\eta_M = \min_{q \in Q_h} \| p_h - p + q - q_h \|_{L^2(\Omega)}
\leq \| p - p_h \|_{L^2(\Omega)} + \min_{q_h \in Q_h} \| p - q_h \|_{L^2(\Omega)}
= \| p - p_h \|_{L^2(\Omega)} + \text{h.o.t.}
\]
This follows from a simple triangle inequality plus some considerations of the minimal \(\| p - q_h \|_{L^2(\Omega)} \). The latter argument requires smoothness of \(p \) and the correct treatment of boundary conditions that restrict the set \(Q_h \). Note that the multiplicative constant in the efficiency estimate
\[
\eta_M \leq \| p - p_h \| + \text{h.o.t.} \tag{1.1}
\]
is one; i.e. \(\eta_M \) is a lower bound up to higher-order terms. This is, in general, untrue for its upper bound \(\eta_A \). The possible overestimation of the error \(\| p - p_h \|_{L^2(\Omega)} \) by \(C_{rel} \eta_A \) might be very large. In [CB, BC1] a local (edge-oriented) averaging is suggested and shown to be equivalent to \(\eta_M \) (cf. Theorem 3.2 in [CH]). In this paper we analyse a different and more popular averaging operator defined by
\[
(Ap_h)(z) = A_z(p_h|_{\omega_z}) \in \mathbb{R}^d \quad \text{for each node} \quad z
\]
and its patch \(\omega_z \) (cf. Section 2 for notation). Here, \(A_z := \pi_z \circ M_z \) for some continuous averaging \(M_z \) that is exact for constants and the orthogonal projection \(\pi_z \) onto an affine subspace \(A_z \subset \mathbb{R}^d \) that carries proper boundary conditions. The main result, Theorem 4.1 reads
\[
\eta_M \leq \eta_A \leq C_{eff} \eta_M. \tag{1.2}
\]
It is remarkable that the constant \(C_{eff} \) depends only on the norm of \(A_z \) and so it holds for any unstructured grid as well as for a quite large class of averaging and finite element schemes. For the popular choice of integral means
\[
M_z(p_h) := \int_{\omega_z} p_h \, dx/|\omega_z|
\]
for any node \(z \) with patch \(\omega_z \) of area or volume \(|\omega_z| \) we establish in Corollary 5.3 for \(P_1 \) finite elements the estimates
\[
1 \leq C_{eff} \leq \sqrt{d} \quad \text{for} \quad d = 2 \quad \text{and} \quad 1 \leq C_{eff} \leq \sqrt{15} \quad \text{for} \quad d = 3. \tag{1.4}
\]
This is surprisingly sharp and does not depend on any detail of the regular triangulation with (possibly) degenerating triangles or tetrahedra.
Remark 1.1. The averaging technique \((1.3)\) is our interpretation of the ZZ-estimator \([ZZ]\) for which reliability and efficiency have been observed before \([R1,R2,N,BR]\) (without treatment of mixed boundary conditions).

Remark 1.2. The averaging estimator \(\eta_A\) can be shown to be equivalent to the edge contributions

\[
\eta_E := \left(\sum_{E \in \mathcal{E}} h_E \| [p_h]_E \|^2_{L^2(E)} \right)^{1/2},
\]

where \([p_h]_E\) denotes the jump of \(p_h\) across the edge \(E \in \mathcal{E}\) (with proper modifications on the boundary). Thus our qualitative results (partly) follow from reliability and efficiency of \(\eta_E\) as well \([C,CV,R1,V]\).

Remark 1.3. The above estimates on \(C_{\text{eff}}\) yield lower bounds \(C_{\text{eff}}^{-1} \leq C_{\text{rel}}\) on the reliability constant (up to higher-order terms). Upper bounds on \(C_{\text{rel}}\) for related estimators with a best value around 1 can be found in \([CF1,CF2]\).

Remark 1.4. As important corollaries of \(\eta_M \approx \eta_A\) and \((1.1)\) we obtain efficiency

\[
(1.5) \quad \eta_A \leq C_{\text{eff}} \| p - p_h \| + \text{h.o.t.}
\]

of the reliable error estimation by \(\eta_A\) in \([CA,CB,BC1,CF3,CF4]\).

The remaining part of the paper is organised as follows. Section 2 presents the necessary technical notation. The preliminaries of Section 3 include Ascoli’s lemma, the strengthened Cauchy inequality, and eigenvalues of mass matrices. The main result \((1.2)\) is stated as Theorem 4.1 in Section 4 with a proof. An analysis of \(C_{\text{eff}}\) in a model situation of Section 5 leads to \((1.3)\) shown in Corollary 5.3.

2. Assumptions

2.1. Regular triangulation. The bounded Lipschitz domain \(\Omega \subset \mathbb{R}^d\), \(d = 1, 2, 3\), with piecewise affine boundary \(\Gamma\) is exactly covered by a triangulation \(T, \bigcup T = \overline{\Omega}\). Each element \(T \in \mathcal{T}\) is a compact interval \(T = \text{conv}\{a,b\}\) if \(d = 1\), a triangle \(T = \text{conv}\{a,b,c\}\) if \(d = 2\), or a tetrahedron \(T = \text{conv}\{a,b,c,d\}\) if \(d = 3\). The element’s vertices \(a, \ldots, d\) are called nodes; \(\mathcal{N}\) denotes the set of all nodes. Each flat boundary \(E\) of an element \(T \in \mathcal{T}\) is either a point \(E = \{a\}\), an edge \(E = \text{conv}\{a,b\}\), or a face \(E = \text{conv}\{a,b,c\}\); \(\mathcal{E}\) denotes the set of all such \(E\); \(\mathcal{E}_{\Omega}\) denotes the interior edges or faces and \(\mathcal{E}_{\Gamma} := \{E \in \mathcal{E} : E \subset \Gamma\}\) is the boundary edges. Analogous notation apply to parallelograms \((d = 2)\) or parallelepipeds \((d = 3)\)

which are possible elements in \(T\) as well. Intersecting distinct elements share either one vertex, an edge, or a common face. Hanging nodes are excluded for simplicity. For each node \(z \in \mathcal{N}\) let \(T_z := \{E \in \mathcal{E} : z \in E \cap \mathcal{N}\}\) and the patch \(\omega_z := \text{int}(\bigcup T_z)\), \(T_z := \{T \in \mathcal{T} : z \in T \cap \mathcal{N}\}\). Each edge or face \(E\) is associated to a unit normal vector \(\nu_E\) with fixed orientation; if \(E \subset \partial \Omega\), set \(\nu_E = \nu\), the outer unit normal along \(\partial \Omega\). The length and area of \(E \in \mathcal{E}\) is denoted by \(h_E = \text{diam}(E)\) and \(|E| = \mathcal{L}^{d-1}(E)\), respectively; \(\mathcal{L}^n\) denotes the \(n\)-dimensional Lebesgue measure along any affine subspace of \(\mathbb{R}^d\). Similarly the length and volume of \(T \in \mathcal{T}\) is denoted by \(h_T = \text{diam}(T)\) and \(|T| = \mathcal{L}^d(T)\), respectively.
2.2. Boundary data. The boundary \(\Gamma = \bigcup \mathcal{E}_\Gamma \) is split into a relatively closed part \(\Gamma_D \) and a remaining part \(\Gamma_N := \Gamma \setminus \Gamma_D \) such that any edge \(E \in \mathcal{E}_\Gamma \) belongs either to \(\Gamma_D \) or to \(\Gamma_N \). Two disjoint subsets \(\mathcal{E}_D \) and \(\mathcal{E}_N \) of \(\mathcal{E}_\Gamma \) are supposed to satisfy
\[
\mathcal{E}_D = \emptyset \quad \text{or} \quad \mathcal{E}_D = \{ E \in \mathcal{E}_\Gamma : E \subset \Gamma_D \},
\]
\[
\mathcal{E}_N = \emptyset \quad \text{or} \quad \mathcal{E}_N = \{ E \in \mathcal{E}_\Gamma : E \subset \Gamma_N \}.
\]
Given \(\mathcal{E}_D \) and \(\mathcal{E}_N \), the boundary data \(g \in L^2(\Gamma_N) \) and \(u_D \in H^{1/2}(\Gamma_D) \cap C(\Gamma_D) \) (i.e. \(u_D \) is continuous on \(\Gamma_D \) and can be extended to a function in \(H^1(\Omega) \)) satisfy \(g \in C(\mathcal{E}_D) \) and \(u_D \in C^1(\mathcal{E}_N) \); i.e.
\[
g|_E \in C(E) \quad \text{for all } E \in \mathcal{E}_N \quad \text{and} \quad u_D|_E \in C^1(E) \quad \text{for all } E \in \mathcal{E}_D.
\]
On each \(E \in \mathcal{E}_D \), let \(\tau_E^{(j)} \) denote a tangential unit vector for \(j = 1, \ldots, d - 1 \) such that \((\nu_E, \tau_E^{(1)}, \ldots, \tau_E^{(d-1)}) \) is a Cartesian basis of \(\mathbb{R}^d \). Then, \(\nabla_E u_D \) denotes the tangential derivative and, given \(a \in \mathbb{R}^d \), \((a)_E \) denotes the vector of all components of \(a \) in \((\tau_E^{(j)})_{j=1}^{d-1} \); e.g. \((a)_E = (\tau_E^{(1)} \cdot a, \tau_E^{(2)} \cdot a) \) for \(d = 3 \); \(\nabla_E u_D = (\nabla u_D)_E = \partial u_D / \partial s \) for \(d = 2 \).

The Dirichlet and Neumann boundary conditions on the gradient \(p = \nabla u \) are asserted at each boundary node \(z \in \mathcal{N} \) by \(p(z) \in A_z \) for the affine subspace
\[
(2.1) \quad A_z := \{ a \in \mathbb{R}^d : \forall E \in \mathcal{E}_z \cap \mathcal{E}_N, (g(z) = a \cdot \nu_E
\]
\[\quad \text{and } \forall E \in \mathcal{E}_z \cap \mathcal{E}_D, \nabla_E u_D(z) = (a)_E \}
\]
of \(\mathbb{R}^d \). Set \(A_z = \mathbb{R}^d \) for \(z \in \mathcal{N} \setminus \Omega \) and suppose \(A_z \neq \emptyset \) for all \(z \in \mathcal{N} \). Finally, let \(\pi_z : \mathbb{R}^d \rightarrow \mathbb{R}^d \) denote the orthogonal projection onto \(A_z \),
\[
\pi_z = \pi_z(0) + V_z,
\]
where \(V_z \) is a linear subspace of \(\mathbb{R}^d \). The (nonlinear) orthogonal projection \(\pi_z \) is Lipschitz continuous with \(\text{Lip}(\pi_z) \leq 1 \) and, for each \(a \in \mathbb{R}^d \), \(a - \pi_z(a) \perp V_z \).

Remark 2.1. As an intersection of hyperplanes, \(A_z \) is an affine subspace of \(\mathbb{R}^d \). The condition \(A_z \neq \emptyset \) is essentially a consistency condition on the boundary data: If \(u \in C^1(V_z) \) satisfies \(u = u_D \) on \(\Gamma_D = \bigcup \mathcal{E}_D \) and \(\partial u / \partial \nu = g \) on \(\Gamma_N = \bigcup \mathcal{E}_N \), then \(\nabla u(z) \in A_z \).

Remark 2.2. The condition \((a)_E = \nabla_E u_D(z) \) in (2.1) is equivalent to
\[
a \cdot \tau_E = \partial u_D(z) / \partial \tau_E \quad \text{for all vectors } \tau_E \in \mathbb{R}^d \text{ with } \tau_E \perp \nu_E.
\]
This is a Dirichlet boundary condition \(u = u_D \) on \(E \) in terms of \(a = p(z) = \nabla u(z) \) at \(z \).

Remark 2.3. In case \(\mathcal{E}_D \cap \mathcal{E}_z = \emptyset \), the condition \(p \in A_z \) asserts Neumann boundary conditions at the node \(z \) with respect to all normals on neighbouring \(\mathcal{E}_z \cap \mathcal{E}_N \). (Here, \(p \) is assumed to be a flux and not necessarily a gradient.)

Remark 2.4. The condition \(p(z) \in A_z \) with simultaneous Dirichlet and Neumann conditions, i.e. with \(\mathcal{E}_z \cap \mathcal{E}_N \neq \emptyset \neq \mathcal{E}_z \cap \mathcal{E}_D \), is based on the interpretation of \(p \) as both a flux and a gradient. Hence, the model example is the Laplace equation with mixed boundary conditions. Nonconforming finite element methods require the case \(\mathcal{E}_D \neq \emptyset \).
Remark 2.5. It is by no means obvious that averaging concerns the fluxes and the gradients simultaneously. The positive examples in [CBJ, CF3, CF4, BC2, CA] may be seen as exceptions. In general, the flux and the gradient approximations may be averaged separately. In the latter case we encounter \(E_N = \emptyset\) or \(E_D = \emptyset\).

2.3. Discrete spaces. On each element there exists a set of shape functions, namely, \(P_{(k)}(T) := P_k(T)\) if \(T\) is triangular and \(P_{(k)}(T) := Q_k(T)\) if \(T\) is rectangular; \(P_k(T)\) and \(Q_k(T)\) denote algebraic polynomials on \(T \subseteq \mathbb{R}^d\) of total and partial degree \(\leq k\), respectively. Furthermore, for each \(T \in T\) let \(P(T)\) satisfy \(P_0(T) \subset P(T) \subset P_1(T)\). Then, set

\[
\mathcal{L}^k(T) := \{ v_h \in L^\infty(\Omega) : \forall T \in T; v_h|_T \in P_{(k)}(T) \} \quad \text{for} \quad k = 0, 1,
\]

\[
S^1(T) := \mathcal{L}^1(T) \cap C(\Omega) = \text{span}(\varphi_z : z \in \mathcal{N}),
\]

\[
P_h := P(T) := \{ p_h \in L^\infty(\Omega)^d : \forall T \in T; p_h|_T \in P(T) \} \subseteq \mathcal{L}^1(T)^d,
\]

\[
Q_h := \{ q_h \in S^1(T)^d : \forall z \in \mathcal{N} \cap \Gamma, \quad q_h(z) \in A_z \}.
\]

The nodal basis functions \(\varphi_z : z \in \mathcal{N}\) are defined by \(\varphi_z \in S^1(T)\) with \(\varphi_z(z) = 1\) and \(\varphi_z(x) = 0\) for all \(z, x \in \mathcal{N}\) with \(x \neq z\). Without further explicit notice, we shall make frequent use of

\[
0 \leq \varphi_z \leq 1, \quad \text{supp} \varphi_z = \overline{\omega_z}, \quad \text{and} \quad \sum_{z \in \mathcal{N}} \varphi_z = 1.
\]

2.4. Averaging operators. Given \(p_h \in P_h\) (not necessarily globally continuous), the operator \(A : P_h \to Q_h\) is supposed to average \(p_h\) on each patch \(\omega_z\) and adopt to boundary conditions. Therefore,

\[
A p_h := \sum_{z \in \mathcal{N}} A_z(p_h|_{\omega_z}) \varphi_z \quad \text{and} \quad A_z := \pi_z \circ M_z : \mathcal{L}^1(T_z)^d \to \mathbb{R}^d.
\]

Recall that \(\mathcal{L}^1(T_z)\) denotes the \(T_z\) piecewise polynomials of degree \(\leq 1\) and that \(p_h|_{\omega_z}\) belongs to \(\mathcal{L}^1(T_z)\). The local operator \(A_z\) is the composition of an averaging process \(M_z : \mathcal{L}^1(T_z)^d \to \mathbb{R}^d\) and the orthogonal projection \(\pi_z : \mathbb{R}^d \to \mathbb{R}^d\) onto the affine subspace \(A_z \subset \mathbb{R}^d\).

The operator \(M_z\) is supposed to be linear and exact on continuous functions in \(P(T_z) := \{ p_h \in L^\infty(\omega_z)^d : \forall T \in T_z; p_h|_T \in P(T) \}\); i.e.

\[
M_z(f) = f(z) \quad \text{for all} \quad f \in P(T_z) \cap C(\omega_z)^d \quad \text{and} \quad z \in \mathcal{N}.
\]

The master example for \(M_z\) reads

\[
M_z(f) := \sum_{T \in T_z} \lambda_{z,T}(f|_T)(z) \quad \text{for all} \quad f \in P(T_z), \quad z \in \mathcal{N}.
\]

A necessary condition for (2.2) on the real coefficients \((\lambda_{z,T} : T \in T_z)\) in (2.3) reads

\[
\sum_{T \in T_z} \lambda_{z,T} = 1.
\]

For a practical realization of \(A_z\) and for numerical examples we refer to [CB, CF3, CF4].

2.5. Estimators. Given the spaces \(P_h\) and \(Q_h\) of subsection 2.3 and the averaging operator \(A : P_h \to Q_h\) of subsection 2.4 we define, for any fixed \(p_h \in P_h\), the averaging estimators

\[
\eta_M := \min_{r_h \in \mathcal{Q}_h} \| p_h - r_h \|_{L^2(\Omega)} \leq \eta_A := \| p_h - A p_h \|_{L^2(\Omega)}.
\]
3. Preliminaries

This section establishes some tools in an abstract frame to clarify the arguments below. Attention is on the arising constants: In contrast to earlier work based on a compactness arguments which led to unknown constants, we aim to quantify C_{ef}.

3.1. Ascoli’s lemma. Given a linear and bounded map $L : H \to \mathbb{R}^n$ in a (real) Hilbert space H with norm $\| \cdot \|$, there holds, for $f \in H$,

\begin{equation}
|L(f)| \leq \|L\| \operatorname{dist}(f; \ker L).
\end{equation}

Here, $\operatorname{dist}(f; \ker L) := \min \{ \|f - g\| : g \in \ker L \}$ is the distance to the (closed) kernel $\ker L$ of L and

\begin{equation}
\|L\| := \sup_{g \in X\setminus\{0\}} \frac{|L(g)|}{\|g\|}
\end{equation}

is the operator norm of L; $|\cdot|$ is the Euclidean norm in \mathbb{R}^n. The proof of (3.1) is by definition of $\|L\|$, \[|L(f)| = |L(f - g)| \leq \|L\| \|f - g\| \quad \text{for all } g \in \ker L. \]

In case $n = 1$, i.e. $L \in H^*$, there even holds equality in (3.1), which is known as Ascoli’s lemma. A simple proof for the converse inequality of (3.1) follows for $g \in H$ with $\|g\| = 1$, $L(g) = \|L\|$ and so with $f - g L(f)/\|L\| \in \ker L$ from

\[\operatorname{dist}(f; \ker L) \leq \|f - (f - g L(f)/\|L\|)\| = |L(f)|/\|L\|. \]

Suppose $n \geq 1$ again, let e_j be the jth canonical unit vector in \mathbb{R}^n, and set $L_j := e_j \cdot L$. Then there holds

\[|L_j(f)| = \|L_j\| \operatorname{dist}(f; \ker L_j). \]

The sum over all $j = 1, \ldots, n$ squared components shows

\begin{equation}
|L(f)|^2 = \sum_{j=1}^n \|L_j\|^2 \operatorname{dist}(f; \ker L_j)^2 \quad \text{for all } f \in H.
\end{equation}

Compared with (3.1), the operator norm $\|L_j\|$ in (3.3) is smaller than $\|L\|$ while the kernel of L_j is larger than $\ker L \subseteq \ker(L_j)$.

3.2. Strengthened Cauchy inequality. Let H be a (real) Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$ and let V and W be closed subspaces of H. Owing to the Cauchy inequality, the constant $\gamma_{V,W}$,

\begin{equation}
\gamma_{V,W} := \sup_{v \in V\setminus\{0\}} \sup_{w \in W\setminus\{0\}} \frac{\langle v, w \rangle}{(\|v\|\|w\|)} \leq 1,
\end{equation}

defines the angle $\angle(v, w)$ between v and w by $0 \leq \cos(\angle(v, w)) = \gamma_{V,W} \leq 1$. The spaces V and W satisfy a strengthened Cauchy inequality if $\gamma_{V,W} < 1$, that is, if $\angle(V, W)$ is positive.

Lemma 3.1 ([H]). For a constant c with $0 \leq c < 1$ and $\gamma_{V,W}$ from (3.4), the following assertions (a), (b), and (c) are pairwise equivalent.

(a) $\gamma_{V,W} \leq c$;
(b) $\forall v \in V, \sqrt{1-c^2}\|v\| \leq \operatorname{dist}(v; W)$;
(c) $\forall v \in V \forall w \in W, \sqrt{(1-c^2)/2(\|v\| + \|w\|)} \leq \|v + w\|$. \hfill \Box

We are particularly interested in (a)\(\iff\)(b) also considered in [AO].
Lemma 3.2. Let X and Y be closed linear subspaces of a Hilbert space H with scalar product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. Set

$$V := \{ x \in X : \forall a \in X \cap Y, \langle x, a \rangle = 0 \} = X \cap (X \cap Y)^\perp$$

and suppose that V and Y are nontrivial and that V has positive finite dimension. Set

$$\gamma_{V,Y} := \sup_{v \in V \setminus \{0\}} \sup_{y \in Y \setminus \{0\}} \langle v, y \rangle / (\|v\| \|y\|).$$

Then $0 \leq \gamma_{V,Y} < 1$ and $\gamma_{V,Y} = \langle v, y \rangle$ for some $v \in V$ and $y \in Y$ with $\|v\| = 1 = \|y\|$. Moreover,

$$\text{dist}(x; X \cap Y) \leq (1 - \gamma_{V,Y}^2)^{-1/2} \text{dist}(x; Y)$$

for all $x \in X$ and the factor $(1 - \gamma_{V,Y}^2)^{-1/2}$ is optimal in the sense that (3.7) fails to hold for any smaller constant.

Proof. Owing to the definition in (3.6) there exist sequences (x_j) and (y_j) in V and Y, respectively, with $\|x_j\| = 1 = \|y_j\|$ and

$$\lim_{j \to \infty} \langle x_j, y_j \rangle = \gamma_{V,Y}.$$

Since (x_j) and (y_j) are bounded in a Hilbert space, there exists a subsequence (not relabeled) with $(x_j) \to x$ and $(y_j) \to y$ in H. The strong convergence of (x_j) follows from the finite dimension of V. Hence, $\|x\| = 1 \geq \|y\|$ and $\lim_{j \to \infty} \langle x_j, y_j \rangle = \langle x, y \rangle$. If $y \neq 0$, we have

$$\gamma_{V,Y} = \langle x, y \rangle \leq \langle x, y \rangle / (\|x\| \|y\|) \leq \gamma_{V,Y}.$$

(The last inequality follows from (3.6) and $x \in V, y \in Y$.) Hence we have $\gamma_{V,Y} = \langle x/\|x\|, y/\|y\| \rangle$ for some $x/\|x\| \in V$ and $y/\|y\| \in Y$ with norm 1 if $0 < \gamma_{V,Y} < \infty$.

If $y = 0$, $\gamma_{V,Y} = 0$ and each $v \in V$ is perpendicular to Y. In both cases, $\gamma_{V,Y} = \langle v, y \rangle$ for some $v \in V$ and $y \in Y$ with $\|v\| = \|y\| = 1$. This proves the attainment result.

A Cauchy inequality shows $\gamma_{V,Y} \leq 1$. If $\gamma_{V,Y} = 1 = \langle v, y \rangle$ for $v \in V$ and $y \in Y$ with $\|v\| = 1 = \|y\|$, we have equality in the Cauchy inequality and hence $v = y$. Thus, $v \in V \cap Y \subseteq X \cap Y$ and so $\|v\|^2 = 0$ owing to (3.5). This contradicts $\|v\| = 1$ and proves $\gamma_{V,Y} \neq 1$.

It remains to apply Lemma 3.1 for V and $W := Y$. Then $\gamma_{V,Y}$ in (3.4) and (3.6) coincide and the equivalence (a)\iff(b) of Lemma 3.1 proves, first,

$$\|v\| \leq (1 - \gamma_{V,Y}^2)^{-1/2} \text{dist}(v; Y)$$

for all $v \in V$ and, second, that the constant factor $(1 - \gamma_{V,Y}^2)^{-1/2}$ in (3.8) cannot be smaller.

Given $x \in X$ and the closed subspace $X \cap Y$ of X, there exists an orthogonal decomposition

$$x = v + w \text{ with } v \in V \text{ and } w \in X \cap Y.$$

Moreover, $\text{dist}(x; X \cap Y) = \|v\|$ and $\text{dist}(v; Y) = \text{dist}(v + w; w + Y) = \text{dist}(x; Y)$. This and (3.8) conclude the proof. \hfill \Box
3.3. Eigenvalues of mass matrices. This subsection summarises a few inequalities and the constants therein. For each element T with volume $|T| = L^d(T)$ we associate $m := \text{card}(\mathcal{N} \cap T)$ nodal basis functions $\varphi_1, \ldots, \varphi_m$ called shape functions with
\begin{equation}
\int_T \varphi_j \, dx = |T|/m \quad \text{for } j = 1, \ldots, m
\end{equation}
(as $\sum_{j=1}^m \varphi_j = 1$ and the forms of $\varphi_1, \ldots, \varphi_m$ are identical). Scaled with $|T|^{-1}$, the mass matrix reads
\begin{equation}
M(T) := \begin{pmatrix}
\int_T \varphi_j \varphi_k \, dx / |T| : j, k = 1, \ldots, m
\end{pmatrix}.
\end{equation}
Table 1 displays some mass matrices and their eigenvalues $\lambda_1, \ldots, \lambda_m$.

Lemma 3.3. Suppose $T \in \mathcal{T}$ and $f \in P_1(T)^d$. Then
\begin{equation}
|T| \sum_{z \in \mathcal{N} \cap T} |f(z)|^2 \leq \lambda(T) \|f\|^2_{L^2(T)}
\end{equation}
where $\lambda(T) = 1/\lambda_1$ for the minimal eigenvalue λ_1 of the matrix (3.10) displayed in Table 1.

Proof. Let $f_j := e_j \cdot f$ be the jth component of f and let $\{z_1, \ldots, z_m\} = \mathcal{N} \cap T$ denote the vertices of T. With the m components $\xi_k := f_j(z_k)$ of $\xi \in \mathbb{R}^m$ and a standard estimation of the Rayleigh quotient there holds
\begin{equation}
\lambda_1 \sum_{z \in \mathcal{N} \cap T} f_j(z)^2 = \lambda_1 |\xi|^2 \leq \xi \cdot M(T) \xi = |T|^{-1} \|f_j\|^2_{L^2(T)}.
\end{equation}
The sum over all components $j = 1, \ldots, d$ verifies assertion (3.11).
4. Equivalence of \(\eta_M \) and \(\eta_A \)

This section is devoted to the proof of the equivalence of \(\eta_M \) and \(\eta_A \) under the present assumptions. A discussion of the constant \(C_{\text{eff}} \) follows in Section 5. Theorem 4.1 covers efficiency (15) for conforming, nonconforming, and mixed finite element methods [CB].

Theorem 4.1. There exists a mesh-size independent positive constant \(C_{\text{eff}} \) with

\[
\eta_M \leq \eta_A \leq C_{\text{eff}} \eta_M.
\]

Proof. The first inequality is obvious and the proof concerns the second. Throughout the first step and main part of the proof let \(T \) denote a fixed element. Set

\[
p_h|_T = \sum_{z \in \mathcal{N} \cap T} p_z \varphi_z|_T \quad \text{and} \quad q_h := A p_h = \sum_{z \in \mathcal{N}} q_z \varphi_z \quad \text{for} \quad q_z := A_z(p_h|_{\omega_z}).
\]

(Notice that the representation of \(p_h \) is local on the fixed element \(T \); \(p_h \) may be discontinuous on \(\Omega \) and so has different coefficients on different elements.) A Cauchy inequality in \(\mathbb{R}^m \), \(m = \text{card}(\mathcal{N} \cap T) \), shows, pointwise on \(T \),

\[
|p_h - q_h|^2 = \sum_{z \in \mathcal{N} \cap T} \varphi_z(p_z - q_z)^2 \leq \sum_{z \in \mathcal{N} \cap T} \varphi_z^2|p_z - q_z|^2.
\]

(4.1)

Since \(q_z = \pi_z(m_z) \) for \(m_z := M_z(p_h|_{\omega_z}) \) and \(p_z - \pi_z(p_z) \perp \mathcal{V}_z \) in \(\mathbb{R}^d \), there holds

\[
|p_z - q_z|^2 = |p_z - \pi_z(p_z)|^2 + |\pi_z(p_z) - \pi_z(m_z)|^2.
\]

With any \(r_z \in \mathcal{A}_z = \pi_z(0) + \mathcal{V}_z \) and \(\text{Lip}(\pi_z) \leq 1 \), this yields

\[
|p_z - q_z|^2 \leq |p_z - r_z|^2 + |p_z - m_z|^2.
\]

(4.2)

The combination of (4.1)-(4.2) is integrated over the fixed \(T \) and shows

\[
\|p_h - q_h\|_{L^2(T)}^2 \leq \sum_{z \in \mathcal{N} \cap T} \int_T \varphi_z dx \sum_{z \in \mathcal{N} \cap T} |p_z - m_z|^2 \int_T \varphi_z dx.
\]

With (3.4) and Lemma 3.3 this gives, for \(r_h := \sum_{z \in \mathcal{N}} r_z \varphi_z \in \mathcal{Q}_h \),

\[
\|p_h - q_h\|_{L^2(T)}^2 \leq \frac{\lambda(T)}{m} \|p_h - r_h\|_{L^2(T)}^2 + \frac{|T|}{m} \sum_{z \in \mathcal{N} \cap T} |p_z - m_z|^2.
\]

(4.3)

The second step focuses on the estimation of \(p_z - m_z \) and introduces the finite-dimensional Hilbert space \(X := P(T_z) \subseteq L^1(T_z)^d \) with the inner product \(\langle \cdot, \cdot \rangle \),

\[
\langle f, g \rangle := \int_{\omega_z} \varphi_z f \cdot g dx/|T| \quad \text{for} \quad f, g \in L^2(\omega_z)^d =: H.
\]

Define \(\delta_{T,z}(f) := (f|_T)(z) \) for all \(f \in X \) and consider

\[
L_{T,z} := \delta_{T,z} - M_z : X \to \mathbb{R}^d \quad \text{linear}
\]

and continuous with the bound

\[
\|L_{T,z}\| := \sup_{f \in P(T_z) \setminus \{0\}} \frac{|f|_T(z) - M_z(f)|}{|T|^{-1/2} \|\varphi_z^{1/2}f\|_{L^2(\omega_z)}}.
\]

(4.6)
A scaling argument shows that \(\|L_{T,z}\| \) does not depend on the diameter of \(\omega_z \) because of the factor \(|T|^{-1/2} \). (Details on the constant \(\|L_{T,z}\| \) from (4.6) follow for specific examples after the proof.) Since \(M_z \) is exact on \(\mathcal{P}(T_z) \cap C(\omega_z)^d \),

\[
\mathbb{R}^d \subseteq \mathcal{P}(T_z) \cap C(\omega_z)^d \subseteq \ker L =: Z \subseteq X \quad \text{and} \quad Y := S^1(T_z)^d.
\]

Ascoli’s lemma (formula (3.11)) shows

\[
|p_z - m_z| = |L_{T,z}(p_h)| \leq \|L_{T,z}\| \dist(p_h|\omega_z; Z).
\]

Lemma 3.2 and \(X \cap Y \subseteq Z \) prove \(0 \leq \gamma < 1 \) for the constant \(\gamma \) of (3.6) and

\[
\dist(p_h|\omega_z; Z) \leq \dist(p_h|\omega_z; X \cap Y) \leq (1 - \gamma^2)^{-1/2} \dist(p_h|\omega_z; Y).
\]

(The constant (3.6) will be discussed at the end of this section for specific examples.)

Step three combines (4.3) and (4.7)-(4.8) with

\[
\dist(p_h|\omega_z; S^1(T_z)^d) \leq |T|^{-1/2} \| \varphi_z^{1/2}(p_h - r_h) \|_{L^2(\omega_z)}
\]

and (writing \(\gamma_z \) for \(\gamma \)) results in

\[
\|p_h - q_h\|_{L^2(T)}^2 \leq \lambda(T)/m \|p_h - r_h\|_{L^2(T)}^2 + \sum_{z \in \mathcal{N} \cap T} \|L_{T,z}\|^2 (1 - \gamma_z^2)^{-1}/m \| \varphi_z^{1/2}(p_h - r_h) \|^2_{L^2(\omega_z)}.
\]

In step four, the sum over all elements \(T \in \mathcal{T} \) and the fact

\[
\sum_{z \in \mathcal{N}} \| \varphi_z^{1/2}(p_h - r_h) \|^2_{L^2(\omega_z)} = \|p_h - r_h\|_{L^2(\Omega)}^2
\]

show the assertion

\[
\eta_A = \|p_h - q_h\|_{L^2(\Omega)} \leq C_{\text{eff}} \|p_h - r_h\|_{L^2(\Omega)} \quad \text{for all } r_h \in \mathcal{Q}_h.
\]

The constant \(C_{\text{eff}} \) depends on \(m = m_T \), \(\lambda(T) \), and \(\|L_{T,z}\|^2/(1 - \gamma_z^2) \) as

\[
C_{\text{eff}}^2 = \max_{T \in \mathcal{T}} \lambda(T) + \max_{z \in \mathcal{N} \cap T} \|L_{T,z}\|^2/(1 - \gamma_z^2)/m_T.
\]

This concludes the proof of \(\eta_A \leq C_{\text{eff}} \eta_M \). \(\square \)

5. Example

The constant \(C_{\text{eff}} \) and its possible dependence on mesh will be studied for the \(P_1 \) FEM with piecewise constant discrete fluxes. Recall that

\[
X := \mathcal{P}(T_z) \subseteq L^1(T_z)^d \subset H := L^2(\omega_z)^d
\]

and \(Y = S^1(T_z)^d \) with the scalar product \((\langle \cdot , \cdot \rangle) \) on \(H \).

The following lemma provides coarse but uniform estimates of eigenvalues which could be computed as a function of \(\text{card}(T_z) \).

Lemma 5.1. Suppose that \(\mathcal{P}(T_z) = L^0(T_z)^d \) and that \(T_z \) consists of simplices in \(\mathbb{R}^d \). Then the constant \(\gamma = \gamma_z \geq 0 \) from (3.3) satisfies

\[
\gamma^2 \leq 5/6 \text{ for } d = 2 \quad \text{and} \quad \gamma^2 \leq 9/10 \text{ for } d = 3.
\]
Proof. Given any \(v_h \in \mathcal{L}^0(T_T^d) \) and \(y_h \in \mathcal{S}^1(T_T^d) \), set \(v_T := v_h|_T \in \mathbb{R}^d \) and \(y_T = \int_T \varphi_T y_h \, dx \) for \(T \in T_T \). Then, (3.15) reads

\[
\gamma^2 = \max_{v_h,y_h} \left(\sum_{T \in T_T} v_T \cdot y_T \right)^2 \bigg/ \left(\sum_{T \in T_T} |T| \|v_T\|^2 / m \right) \left(\int_{\omega_T} \varphi_T |y_h|^2 \, dx \right),
\]

where, by definition of \(V \), \(v_h \in V \) satisfies \(\sum_{T \in T_T} |T| \|v_T\| = 0 \). Consequently, the sum

\[
\sum_{T \in T_T} v_T \cdot y_T
\]
does not depend on an additive constant in \(y_h \) which, therefore, is determined to minimise \(\int_{\omega_T} \varphi_T |y_h|^2 \, dx \). This results in the condition \(\int_{\omega_T} \varphi_T y_h \, dx = 0 \); i.e.

\[
(5.1)
\]

A Cauchy inequality yields

\[
(5.2)
\]

and equality is indeed attained for \(v_T = y_T / |T| \) (compatible with \(v_h \in V \) and (5.1)). Given \(y_h \in \mathcal{S}^1(T_T^d) \) with (5.1) and nodal values \(y_0 = y_h(z) \), \(y_{a,T} = y_h(a) \), \(y_{b,T} = y_h(b) \) on \(T = \text{conv}\{z,a,b\} \in T_T \) for \(d = 2 \), a straightforward calculation shows

\[
y_T = |T|(2y_0 + y_{a,T} + y_{b,T}) / 12 \quad \text{for} \quad T \in T_T.
\]

This and (5.1) plus a Cauchy inequality yield

\[
12 \sum_{T \in T_T} |y_T|^2 / |T| = \sum_{T \in T_T} y_T \cdot (2y_0 + y_{a,T} + y_{b,T})
\]

\[
= \sum_{T \in T_T} y_T \cdot (y_{a,T} + y_{b,T})
\]

\[
\leq \left(\sum_{T \in T_T} |y_T|^2 / |T| \right)^{1/2} \left(\sum_{T \in T_T} |T| |y_{a,T} + y_{b,T}|^2 \right)^{1/2}
\]

and so (divide by \(\left(\sum_{T \in T_T} |y_T|^2 / |T| \right)^{1/2} \) and square) leads to

\[
(5.3)
\]

The summand on the right-hand side is

\[
|T| |y_{a,T} + y_{b,T}|^2
\]

\[
\leq 2|T| (2|y_0|^2 + |y_{a,T}|^2 + |y_{b,T}|^2)
\]

\[
= 120 \int_T \varphi_T |y_h|^2 \, dx - 288|y_T|^2 / |T|.
\]

The latter equality follows with lengthy but straightforward calculation with the well-known formula \(\int_T \lambda_1\lambda_2 \lambda_3 dx = 2|T| \alpha\beta\gamma / (2 + \alpha + \beta + \gamma) \) for the barycentric coordinates \(\lambda_1, \lambda_2, \lambda_3 \) on the triangle \(T \). The combination of (5.3), (5.4) verifies

\[
\sum_{T \in T_T} |y_T|^2 / |T| \leq 5/18 \int_{\omega_T} \varphi_T |y_h|^2 \, dx.
\]
Using this in (2.3) shows $\gamma^2 \leq 5/6$. The proof for $d = 3$ follows with the same arguments modified for $y_T = |T|/(2y_0 + y_{a,T} + y_{b,T} + y_{c,T})/20$, etc.; the details are omitted. \hfill \Box

To study $\|L_{z,T}\|$, let M_z be given by (2.3); i.e.

$$M_z(f) = \sum_{T \in T_z} \lambda_{z,T} f_T$$

for $f_T = f_T \in \mathbb{R}^d$, $T \in T_z$, and $f \in \mathcal{L}^0(\mathcal{T}_z)^d$.

The real coefficients $\lambda_{z,T}$ sum up to 1 = $\sum_{T \in T_z} \lambda_{z,T}$ (some are possibly negative). For comparison, a popular choice for the coefficient $\lambda_{z,T}$ reads

$$\lambda_{z,T} := \frac{|T|/|\omega_z|}{T} \text{ for } T \in \mathcal{T}_z.$$

Lemma 5.2. Suppose (1.3) for fixed $z \in \mathcal{T}_z \cap \mathcal{N}$ and that $P(\mathcal{T}_z) = \mathcal{L}^0(\mathcal{T}_z)^d$ and that \mathcal{T}_z consists of simplices. Then $m = d + 1$ and

$$\|L_{z,T}\|^2 = m \left((1 - \lambda_{z,T})^2 + \sum_{K \in T_z \setminus \{T\}} \lambda^2_{z,K}/M_z/K \right).$$

Proof. Given any $f \in \mathcal{L}^0(\mathcal{T}_z)^d$ (write $f_K := f_T$ for each $K \in T$),

$$L_{z,T}(f) = (1 - \lambda_{z,T}) f_T - \sum_{K \in T_z \setminus \{T\}} \lambda_{z,T} f_K$$

is independent of a global additive constant in f. To minimise $\|\varphi_z^{1/2} f\|$, this constant is such that $\int_{\omega_z} \varphi_z f \, dx = 0$. Hence

$$\sum_{K \in T_z} |K| f_K = 0$$

and (with an argument f in $\mathcal{L}^0(\mathcal{T}_z)^d \setminus \{0\}$ with (5.6) in the supremum)

$$\|L_{z,T}\|^2 = \sup f \left(\frac{|L_{z,T}(f)|^2}{\sum_{M \in T_z \setminus \{T\}} |M|^2 / |M|/m} \right).$$

A Cauchy inequality shows

$$|L_{z,T}(f)| \leq \left(\sum_{M \in T_z} |M|^2 / |M| \right)^{1/2} \left((1 - \lambda_{z,T})^2 / |T| + \sum_{K \in T_z \setminus \{T\}} \lambda^2_{z,K}/|K| \right)^{1/2}.$$

Equality holds for $f_T = (1 - \lambda_{z,T})/|T| e$ and $f_K = -\lambda_K/|K| e$ for any other $K \in T_z \setminus \{T\}$ and some fixed unit vector $e \in \mathbb{R}^d$. Since this choice of f satisfies (5.0), there holds

$$\|L_{z,M}\|^2 = m |T| \left((1 - \lambda_{z,T})^2 / |T| + \sum_{K \in T_z \setminus \{T\}} \lambda^2_{z,K}/|K| \right).$$

The following consequence gives an estimate for the choice (5.5) and indicates that this choice is optimal.

Corollary 5.3. Under the assumptions of the preceding two lemmas (satisfied for all $z \in \mathcal{N}$) and for $\mu_{z,T} = \lambda_{z,T}$ there holds

$$\eta_M \leq \eta_A \leq \sqrt{10} \eta_M \text{ for } d = 2 \quad \text{and} \quad \eta_M \leq \eta_A \leq \sqrt{15} \eta_M \text{ for } d = 3.$$

Proof. The estimates follow from Theorem 1.1 and Lemmas 5.1 and 5.2 with $\|L_{z,T}\|^2 = m(1 - \mu_{z,T}) \leq m$ and $\lambda(T) = 12, 20$ for $d = 2, 3$. \hfill \Box
References

Institute for Applied Mathematics and Numerical Analysis, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria

E-mail address: Carsten.Carstensen@tuwien.ac.at