Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical simulation of stochastic evolution equations associated to quantum Markov semigroups


Author: Carlos M. Mora
Journal: Math. Comp. 73 (2004), 1393-1415
MSC (2000): Primary 60H35; Secondary 60H10, 60H15, 60H30, 65C30, 65C05
DOI: https://doi.org/10.1090/S0025-5718-03-01595-3
Published electronically: August 4, 2003
MathSciNet review: 2047093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We address the problem of approximating numerically the solutions $\left( X_{t}:t\in \left[ 0,T\right] \right) $ of stochastic evolution equations on Hilbert spaces $\left( \mathfrak{h},\left\langle \cdot ,\cdot \right\rangle \right) $, with respect to Brownian motions, arising in the unraveling of backward quantum master equations. In particular, we study the computation of mean values of $\left\langle X_{t},AX_{t}\right\rangle $, where $A$ is a linear operator. First, we introduce estimates on the behavior of $X_{t}$. Then we characterize the error induced by the substitution of $X_{t}$ with the solution $X_{t,n}$ of a convenient stochastic ordinary differential equation. It allows us to establish the rate of convergence of $\mathbf{E} \left\langle \tilde{X}_{t,n},A\tilde{X}_{t,n}\right\rangle $ to $\mathbf{E} \left\langle X_{t},AX_{t}\right\rangle $, where $\tilde{X}_{t,n}$ denotes the explicit Euler method. Finally, we consider an extrapolation method based on the Euler scheme. An application to the quantum harmonic oscillator system is included.


References [Enhancements On Off] (What's this?)

  • 1. R. Balescu, Equilibrium and nonequilibrium statistical mechanics. Krieger Publishing Company (1991) (original edition 1975). MR 53:12405
  • 2. A. Barchielli, A.M. Paganoni, F. Zucca, On stochastic differential equations and semigroups of probability operators in quantum probability. Stochastic Proc. and their Appl. 73 (1998), 69-86. MR 99k:81138
  • 3. H. Carmichael, An open systems approach to quantum optics. Lecture Notes in Physics. Springer-Verlag (1993).
  • 4. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum mechanics. Volume 1. Hermann (1977).
  • 5. A.M. Chebotarev, F. Fagnola, Sufficient conditions for conservativity of minimal quantum dynamical semigroups. J. Funct. Anal. 153 (1998), 382-404. MR 99d:81064
  • 6. F. Fagnola, R. Rebolledo, C. Saavedra, Quantum flows associated to master equations in quantum optics. J. Math. Phys. 35 (1994), 1-12. MR 94k:81353
  • 7. F. Fagnola, Quantum markov semigroups and quantum flows. Proyecciones 18 (1999), 1-144. MR 2002f:81054
  • 8. F. Fagnola, S. J. Wills, Solving quantum stochastic differential equations with unbounded coefficients. J. Funct. Anal. 198 (2003), 279-310.
  • 9. N. Gisin, I.C. Percival, The quantum-state diffusion model applied to open systems. J. Phys. A 25 (1992), 5677-5691. MR 94b:82028
  • 10. A.S. Holevo, On dissipative stochastic equations in a Hilbert space. Probab. Theory Related Fields 104 (1996), 483-500. MR 98c:60068
  • 11. P.T. Jorgensen, Approximately reducing subspaces for unbounded linear operators. J. Funct. Anal. 23 (1976), 392-414. MR 98c:60068
  • 12. T. Kato, Perturbation theory for linear operators. Corrected printing of the second edition. Springer-Verlag (1980). MR 96a:47025
  • 13. P.E. Kloeden, E. Platen, Numerical solution of stochastic differential equations. Springer, Berlin (1992). MR 94b:60069
  • 14. Tarso B.L. Kist, M. Orszag, T.A. Brun, L. Davidovich, Stochastic Schrödinger equations in cavity QDE: physical interpretation and localization. J. Opt. B: Quantum Semiclass. Opt. 1 (1999), 251-263.
  • 15. R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Evolution Problems I, Springer-Verlag (1992). MR 92k:00006
  • 16. G.N. Milstein, The numerical integration of stochastic differentials equations. Ural University Press (1988).
  • 17. C. Mora, Solución numérica de ecuaciones diferenciales estocásticas mediante métodos exponenciales. Ph.D. Thesis, Pontificia Universidad Católica de Chile (2002).
  • 18. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag (1975). MR 85g:47061
  • 19. I.C. Percival, Quantum state diffusion. Cambridge University Press (1998). MR 2000f:81023
  • 20. P. Protter, Stochastic integration and differential equations. Springer (1990). MR 91i:60148
  • 21. M.O. Scully, M.S. Zubairy, Quantum optics. Cambridge University Press (1997).
  • 22. W. T. Strunz, L. Diósi, N. Gisin, T. Yu, Quantum trajectories for Brownian motion. Phys. Rev. Lett. 83 (1999), 4909-4913. MR 2000h:82042
  • 23. D. Talay, Efficient numerical schemes for the approximation of expectations of functionals of the solution of an SDE and applications. Springer Lecture Notes in Control and Inform. Sc. 61 (1984), 294-313. MR 88b:60140
  • 24. D. Talay, Discrétisation d 'une E.D.S. et calcul approaché d'espérances de fonctionnelles de la solution. Math. Mod. Numer. Anal. 20 (1986), 141-179. MR 87k:60153
  • 25. D. Talay, L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 (1990), 483-509. MR 92e:60124
  • 26. D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Processes. Related Fields 8 (2002), 163-198. MR 2003e:60129

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 60H35, 60H10, 60H15, 60H30, 65C30, 65C05

Retrieve articles in all journals with MSC (2000): 60H35, 60H10, 60H15, 60H30, 65C30, 65C05


Additional Information

Carlos M. Mora
Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile
Address at time of publication: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160 C, Concepción, Chile
Email: cmora@ing-mat.udec.cl

DOI: https://doi.org/10.1090/S0025-5718-03-01595-3
Keywords: Stochastic evolution equation, numerical solution, rate of convergence, Euler scheme, Galerkin method, quantum dynamical semigroup, quantum master equation.
Received by editor(s): August 25, 2002
Received by editor(s) in revised form: January 7, 2003
Published electronically: August 4, 2003
Additional Notes: This research has been partially supported by FONDECYT grant 2000036, a DIPUC Ph.D. grant and the program “Cátedra Presidencial on Qualitative Analysis of Quantum Dynamical Systems”.
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society