ANALYSIS OF RECOVERY TYPE
A POSTERIORI ERROR ESTIMATORS
FOR MILDLY STRUCTURED GRIDS

JINCHAO XU AND ZHIMIN ZHANG

Abstract. Some recovery type error estimators for linear finite elements are analyzed under $O(h^{1+\alpha})$ ($\alpha > 0$) regular grids. Superconvergence of order $O(h^{1+\rho})$ ($0 < \rho \leq \alpha$) is established for recovered gradients by three different methods. As a consequence, a posteriori error estimators based on those recovery methods are asymptotically exact.

1. Introduction

A posteriori error estimates have become standard in modern engineering and scientific computation. There are two types of popular error estimators: the residual type (see, e.g., [2], [4]) and the recovery type (see, e.g., [21]). The most representative recovery type error estimator is the Zienkiewicz-Zhu error estimator, especially the estimator based on gradient patch recovery by local discrete least-squares fitting [22], [23]. The method is now widely used in engineering practice for its robustness in a posteriori error estimates and its efficiency in computer implementation. It is a common belief that the robustness of the ZZ estimator is rooted in the superconvergence property of the associated gradient recovery under structured meshes. Superconvergence properties of the ZZ recovery based on local least-squares fitting are proven by Zhang [17] for all popular elements under rectangular meshes, by Li-Zhang [11] for linear elements under strongly regular triangular meshes, and by Zhang-Victory [18] for tensor product elements under strongly regular quadrilateral meshes.

While there is a sizable literature on theoretical investments for residual type error estimators (see, e.g., [1], [3], [10], [14] and references therein), there have not been many theoretical results on recovery type error estimators. Nevertheless, the recovery type error estimators perform astonishingly well even for unstructured grids. The current paper intends to explain this phenomenon. We observe that for...
an unstructured mesh, when adaptive procedure is used, a mesh refinement will
usually bring in some kind of local structure. It is then reasonable to assume that
for most of the domain, every two adjacent triangles form an $O(h^{1+\alpha})$ approximate
parallelogram. Under this assumption, we are able to establish superconvergence of
the gradient recovery operator for three popular methods: weighted averaging, local
L^2-projection, and the ZZ patch recovery. Furthermore, by utilizing an integral
identity for linear elements on one triangular element developed by Bank and Xu [5],
we are able to generalize their superconvergence result between the finite element
solution and the linear interpolation from an $O(h^2)$ regular grid to an $O(h^{1+\alpha})$
regular grid. Finally, we are able to prove asymptotic exactness of the three recovery
error estimators.

The topic of a posteriori error estimates has recently attracted more and more
attention in the scientific community (see, e.g., [5], [6], [7], [9], [16], [20]; also see
recent books [1], [3] for some general discussions). The literature regarding
finite element superconvergence theory can be found in the books [8], [10], [12], [15], [19].

2. Geometry identities of a triangle

In this section, we shall generalize the result in [5] for $\alpha = 1$ to all $\alpha > 0$.
Following the argument in [5], we consider in Figure 1 a triangle τ with vertices
$p_k^\tau = (x_k, y_k), 1 \leq k \leq 3,$ oriented counterclockwise, and corresponding nodal basis
functions (barycentric coordinates) $\{\phi_k\}_{k=1}^3$. Let $\{e_k\}_{k=1}^3$ denote the edges of ele-
ment τ, $\{\theta_k\}_{k=1}^3$ the angles, $\{n_k\}_{k=1}^3$ the unit outward normal vectors, $\{t_k\}_{k=1}^3$ the
unit tangent vectors with counterclockwise orientation, $\{\ell_k\}_{k=1}^3$ the edge lengths,
and $\{d_k\}_{k=1}^3$ the perpendicular heights. Let \tilde{p} be the point of intersection for the
perpendicular bisectors of the three sides of τ. Let $|s_k|$ denote the distance between
\tilde{p} and side k. If τ has no obtuse angles, then the s_k will be nonnegative. Otherwise,
the distance to the side opposite the obtuse angle will be negative.

Let D_τ be a symmetric 2×2 matrix with constant entries. We define
\[\xi_k = -n_{k+1} \cdot D_\tau n_{k-1}. \]
The important special case $D_\tau = I$ corresponds to $-\Delta$, and in this case $\xi_k = \cos \theta_k$.
Let $q_k = \phi_{k+1}\phi_{k-1}$ denote the quadratic bump function associated with edge e_k
and let $\psi_k = \phi_k(1 - \phi_k)$.

![Figure 1. Parameters associated with the triangle τ](image-url)
The following fundamental identity is proved in \(\square \) for \(v_h \in P_1(\tau) \):

\[
\int_\tau (u - u_\tau) \cdot D_\tau \nabla v_h = \sum_{k=1}^3 \int_{e_k} \frac{\xi_k \xi_k}{2 \sin \theta_k} \left\{ \left(\ell_{k+1}^2 - \ell_{k-1}^2 \right) \frac{\partial^2 u}{\partial t_k^2} + 4|\tau| \frac{\partial^2 u}{\partial t_k \partial n_k} \right\} \frac{\partial v_h}{\partial t_k} - \frac{1}{2} \sum_{k=1}^3 \frac{\ell_k \xi_k}{2 \sin \theta_k} \left\{ \ell_{k+1} \frac{\partial^3 u}{\partial t_{k+1} \partial t_k \partial n_k} + \ell_{k-1} \frac{\partial^3 u}{\partial t_{k-1} \partial t_k \partial n_k} \right\} \frac{\partial v_h}{\partial t_k}
\]

where \(u_\tau \in P_1(\tau) \) is the linear interpolation of \(u \) on \(\tau \).

We say that two adjacent triangles (sharing a common edge) form an \(O(h^{1+\alpha}) \)
\((\alpha > 0) \) approximate parallelogram if the lengths of any two opposite edges differ only by \(O(h^{1+\alpha}) \).

Definition. The triangulation \(T_h = T_{1,h} \cup T_{2,h} \) is said to satisfy Condition \((\alpha, \sigma) \) if there exist positive constants \(\alpha \) and \(\sigma \) such that every two adjacent triangles inside \(T_{1,h} \) form an \(O(h^{1+\alpha}) \) parallelogram and

\[\Omega_{1,h} \cup \Omega_{2,h} = \Omega, \quad |\Omega_{2,h}| = O(h^\sigma), \quad \Omega_{1,h} \equiv \bigcup_{\tau \in T_{1,h}} \tau, \quad i = 1, 2. \]

Remark. There are two important ingredients in an automatic mesh generation code. One, called swap diagonal, changes the direction of some diagonal edges in order to obtain near parallel directions for adjacent element edges and to make as many nodes as possible have six triangles attached. Another, known as Lagrange smoothing, iteratively relocates nodes to place each node near a mesh symmetry center (see condition \(\square \) in Section 3).

Clearly, both swap diagonal and Lagrange smoothing are intended to make every two adjacent triangles form an \(O(h^{1+\alpha}) \) parallelogram. Eventually, only a small portion of elements (including boundary elements) do not satisfy this condition. These elements then belong to \(\Omega_{2,h} \), which has a small measure. Therefore, Condition \((\alpha, \sigma) \) is a reasonable condition in practice and can be satisfied by most meshes produced by automatic mesh generation codes.

Denote \(V_h \subset H^1(\Omega) \), the \(C^0 \) linear finite element space associated with \(T_h \).

Lemma 2.1. Assume that \(T_h \) satisfy Condition \((\alpha, \sigma) \). Let \(D_\tau \) be a piecewise constant matrix function defined on \(T_h \), whose elements \(D_{\tau_{ij}} \) satisfy

\[
|D_{\tau_{ij}}| \lesssim 1, \quad |D_{\tau_{ij}} - D_{\tau'_{ij}}| \lesssim h^\alpha, \quad i = 1, 2; \quad j = 1, 2.
\]

Here \(\tau \) and \(\tau' \) are a pair of triangles sharing a common edge. Then for any \(v_h \in V_h \)

\[
\sum_{\tau \in T_h} \int_\tau (u - u_\tau) \cdot D_\tau \nabla v_h \lesssim h^{1+\rho} (||u||_{3,\Omega} + ||u||_{2,\infty,\Omega}) |v|_{1,\Omega}, \quad \rho = \min(\alpha, \frac{\sigma}{2}, \frac{1}{2}),
\]

where \(u_\tau \in V_h \) is the interpolation of \(u \).

Proof. Applying \(\square \),

\[
\sum_{\tau \in T_h} \int_\tau (u - u_\tau) \cdot D_\tau \nabla v_h = I_1 + I_2
\]
where

\[
I_1 = \sum_{\tau \in T_h} \sum_{k=1}^{3} \int_{e_k} \frac{\xi_k q_k}{2 \sin \theta_k} \left\{ \left(\ell_{k+1}^2 - \ell_{k-1}^2 \right) \frac{\partial^2 u}{\partial t_k^2} + 4|\tau| \frac{\partial^2 u}{\partial t_k \partial n_k} \right\} \frac{\partial v_h}{\partial t_k},
\]

\[
I_2 = - \sum_{\tau \in T_h} \int_{\tau} \sum_{k=1}^{3} \frac{\xi_k \xi_k}{2 \sin^2 \theta_k} \left\{ \ell_{k+1} \psi_k - 1 \frac{\partial^3 u}{\partial t_{k+1} \partial t_k \partial t_k} + \ell_{k-1} \psi_{k+1} \frac{\partial^2 u}{\partial^2 t_{k+1} \partial t_k} \right\} \frac{\partial v_h}{\partial t_k}.
\]

I_2 is easily estimated by

\[
|I_2| \lesssim h^2 |u|_{2,\Omega} |v_h|_{1,\Omega}.
\]

To estimate I_1, we separate all interior edges into two different groups. E_1 is the set of edges e such that the two adjacent triangles sharing e form an $O(h^{1+\alpha})$ approximate parallelogram and E_2 is the set of the remaining interior edges. The set of all interior edges is given by $E = E_1 + E_2$.

For each $e \in E$, there are two triangles, say τ and τ', that share e as a common edge. Denote, with respect to τ,

\[
\alpha_e = \frac{\xi_k}{2 \sin \theta_k} (\ell_{k+1}^2 - \ell_{k-1}^2), \quad \beta_e = \frac{\xi_k}{2 \sin \theta_k} 4|\tau|,
\]

and with respect to τ',

\[
\alpha'_e = \frac{\xi_{k'}}{2 \sin \theta_{k'}} (\ell_{k'+1}^2 - \ell_{k'-1}^2), \quad \beta'_e = \frac{\xi_{k'}}{2 \sin \theta_{k'}} 4|\tau'|.
\]

Taking n and t to correspond to τ, we can write

\[
I_1 = I_{11} + I_{12} + I_{13},
\]

where

\[
I_{1j} = \sum_{e \in E_j} \int_{e} q_e \left\{ (\alpha_e - \alpha'_e) \frac{\partial^2 u}{\partial t^2} + (\beta_e - \beta'_e) \frac{\partial^2 u}{\partial t \partial n} \right\} \frac{\partial v_h}{\partial t}
\]

for $j = 1, 2$, and

\[
I_{13} = \sum_{e \in \partial \Omega} \int_{e} q_e \left\{ \alpha_e \frac{\partial^2 u}{\partial t^2} + \beta_e \frac{\partial^2 u}{\partial t \partial n} \right\} \frac{\partial v_h}{\partial t}.
\]

It is easy to see that, if $v_h = 0$ on $\partial \Omega$, then $I_{13} = 0$. Otherwise, we have the following estimate:

\[
|I_{13}| \lesssim h^{3/2} |u|_{2,\infty,\partial \Omega} |v_h|_{1,\Omega}.
\]

Setting $z = t$ and $z = n$, we estimate

\[
\left| \int_{\tau} q_e \frac{\partial^2 u}{\partial \partial \nabla} \frac{\partial v_h}{\partial t} \right| \lesssim h^{-1} |u|_{2,\infty,\Omega} \int_{\tau} |\nabla v_h|.
\]

By definition, for $e \in E_1$, $\alpha'_e = \alpha_e (1 + O(h^\alpha))$ and $\beta'_e = \beta_e (1 + O(h^\alpha))$. Therefore

\[
|\alpha_e - \alpha'_e| \lesssim h^{2+\alpha}, \quad |\beta_e - \beta'_e| \lesssim h^{2+\alpha}.
\]

Combining this with (2.6), we have

\[
|I_{11}| \lesssim h^{1+\alpha} |u|_{2,\infty,\Omega} \int_{\Omega} |\nabla v_h| \lesssim h^{1+\alpha} |u|_{2,\infty,\Omega} |v_h|_{1,\Omega}.
\]
Now we turn to the estimate for I_{12}. Since adjacent elements in $\Omega_{2,h}$ do not form an $O(h^{1+\alpha})$ approximate parallelogram, we simply estimate

$$|\alpha_e - \alpha'_e| \leq |\alpha_e| + |\alpha'_e| \lesssim h^2, \quad |\beta_e - \beta'_e| \leq |\beta_e| + |\beta'_e| \lesssim h^2.$$

Similarly to (2.7), this leads to

$$|J_{12}| \lesssim h|u|_{2,\infty,\Omega} \sum_{\tau \in T_{2,h}} \int_{\tau} |\nabla v_h| \lesssim h|u|_{2,\infty,\Omega} \|\nabla v_h\|_{0,\Omega_{2,h}} h^{\sigma/2}.$$

Combining this with (2.5) and (2.7) leads to

(2.8) $$|I_1| \lesssim h^{1+\rho}|u|_{2,\infty,\Omega} |v_h|_{1,\Omega}.$$

Finally, applying (2.4) and (2.8) to (2.3), we obtain (2.2).

3. Gradient recovery operators

We define N_h as the nodal set of a quasi-uniform triangulation T_h. Given $z \in N_h$, we consider an element patch ω around z, which we choose as the origin of a local coordinates. Let (x_j, y_j) be the barycenter of a triangle $x_j \subset \omega$, $j = 1, 2, \ldots, m$. We require that one of the following two geometric conditions be satisfied for $\alpha \geq 0$:

(3.1) $$\frac{1}{m} \sum_{j=1}^{m} (x_j, y_j) = O(h^{1+\alpha})(1, 1).$$

(3.2) $$\sum_{j=1}^{m} \frac{|x_j|}{|\omega|} (x_j, y_j) = O(h^{1+\alpha})(1, 1).$$

Here we use (x_j, y_j) to represent a vector in conditions (3.1) and (3.2).

Remark. Condition (α, σ) implies both conditions (3.1) and (3.2) for $z \in N_h \cap \Omega_{1,h}$. Indeed, conditions (3.1) and (3.2) are trivially (with $\alpha = \infty$) satisfied by uniform meshes of the regular pattern, the Union Jack pattern, and the criss-cross pattern, and allow an $O(h^{1+\alpha})$ deviation from those meshes. For example, a strongly regular mesh is an $O(h^2)$ deviation from a uniform mesh of the regular pattern. Note that the condition (3.1) depends only on relative positions of the barycenters of the triangles and is independent of the shapes, sizes, and numbers of those triangles.

A boundary node z usually leads to $\alpha = 0$. However, if z is an interior node with $\alpha = 0$, then there are no restrictions and we have a completely unstructured mesh around z.

Let $u_I \in V_h$ be the linear interpolation of a given function u. We shall discuss a gradient recovery operator G_h and prove the superconvergent property between ∇u and $G_h u_I$.

The value of $G_h u_I$ is first determined at a vertex and then linearly interpolated over the whole domain. There are three popular ways to generate $G_h u_I$ at a vertex z.

(a) Weighted averaging.

(3.3) $$G_h u_I(z) = \sum_{j=1}^{m} \frac{|x_j|}{|\omega|} \nabla u_I(x_j, y_j).$$
(b) Local L^2-projection. We seek linear functions $p_l \in P_l(\omega)$ ($l = 1, 2$), such that
\begin{equation}
\int_\omega [p_l(x, y) - \partial_l u_l(x, y)] q(x, y) \, dx \, dy = 0, \quad \forall q \in P_l(\omega), \quad l = 1, 2.
\end{equation}

Then we define $G_h u_l(z) = (p_1(0, 0), p_2(0, 0))$.

(c) Local discrete least-squares fitting proposed by Zienkiewicz-Zhu [22]. We seek linear functions $p_l \in P_l(\omega)$ ($l = 1, 2$), such that
\begin{equation}
\sum_{j=1}^m [p_l(x_j, y_j) - \partial_l u_l(x_j, y_j)] q(x_j, y_j) = 0, \quad \forall q \in P_l(\omega), \quad l = 1, 2.
\end{equation}

Then we define $G_h u_l(z) = (p_1(0, 0), p_2(0, 0))$.

Note that (c) is a discrete version of (b). The existence and uniqueness of the minimizers in (b) and (c) can be found in [11] Lemma 1. The following theorem generalizes the result in [11] from $\alpha = 1$ to $\alpha > 0$.

Theorem 3.1. Let ω be an element patch around a node $z \in N_h$, let $u \in W^3_\infty(\omega)$, and let $G_h u_l(z)$ be produced by either the local L^2-projection or the weighted averaging under condition \(3.2\), or by the local discrete least-squares fitting under condition \(3.5\). Then
\[|G_h u_l(z) - \nabla u(z)| \lesssim h^{1+\alpha} |u|_{3, \infty, \omega}. \]

Proof. (a) For the weighted averaging, we have
\begin{align*}
&\sum_{j=1}^m \left| \frac{\tau_j}{|\omega|} \partial_l u_l(x_j, y_j) - \partial_l u(0, 0) \right| \\
&= \sum_{j=1}^m \left| \frac{\tau_j}{|\omega|} \partial_l (u_l - u)(x_j, y_j) + \sum_{j=1}^m \left| \frac{\tau_j}{|\omega|} [\partial_l u(x_j, y_j) - \partial_l u(0, 0)] \right| \\
&= \sum_{j=1}^m \left| \frac{\tau_j}{|\omega|} \partial_l (u_l - u)(x_j, y_j) + \nabla \partial_l u(0, 0) \cdot \sum_{j=1}^m \left| \frac{\tau_j}{|\omega|} (x_j, y_j) \right| + R_1(u),
\end{align*}

where, by the Taylor expansion,
\[|R_1(u)| \lesssim h^2 |u|_{3, \infty, \omega}. \]

Since the barycenter is the derivative superconvergent point for the linear interpolation, then
\[|\partial_l (u_l - u)(x_j, y_j)| \lesssim h^2 |u|_{3, \infty, \omega}, \quad j = 1, 2, \ldots, m. \]

Recall the condition \(3.2\), and we derive
\[|\nabla \partial_l u(0, 0) \cdot \sum_{j=1}^m \left| \frac{\tau_j}{|\omega|} (x_j, y_j) \right| | \lesssim h^{1+\alpha} |u|_{2, \infty, \omega}. \]

Therefore,
\begin{equation}
\sum_{j=1}^m \left| \frac{\tau_j}{|\omega|} \partial_l u_l(x_j, y_j) - \partial_l u(0, 0) \right| \lesssim h^{1+\alpha} |u|_{3, \infty, \omega}.
\end{equation}
(b) For the local L^2-projection, we set $q = 1$ in (3.4) to obtain
\[
\sum_{j=1}^{m} |\tau_j| p_l(x_j, y_j) = \sum_{j=1}^{m} |\tau_j| \partial u_I(x_j, y_j).
\]

Therefore,
\[
p_l(0, 0) - \sum_{j=1}^{m} \frac{|\tau_j|}{|\omega|} \partial u_I(x_j, y_j) = p_l(0, 0) - \sum_{j=1}^{m} \frac{|\tau_j|}{|\omega|} p_l(x_j, y_j)
\]
\[
= -\nabla p_l(0, 0) \cdot \sum_{j=1}^{m} \frac{|\tau_j|}{|\omega|} (x_j, y_j).
\]

Using (see [11, Lemma 2])
\[
(3.7) \quad |\nabla p_l(0, 0)| \lesssim \|u\|_{3, \infty, \omega}
\]
and condition (3.2), we obtain
\[
(3.8) \quad |p_l(0, 0) - \sum_{j=1}^{m} \frac{|\tau_j|}{|\omega|} \partial u_I(x_j, y_j)| \lesssim h^{1+\alpha} \|u\|_{3, \infty, \omega}.
\]

Combining (3.6) and (3.8), we have proved
\[
(3.9) \quad |p_l(0, 0) - \partial u(0, 0)| \lesssim h^{1+\alpha} \|u\|_{3, \infty, \omega}.
\]

(c) For the local discrete least-squares fitting, we set $q = 1$ in (3.5) to obtain
\[
\sum_{j=1}^{m} p_l(x_j, y_j) = \sum_{j=1}^{m} \partial u_I(x_j, y_j).
\]

Therefore,
\[
p_l(0, 0) - \frac{1}{m} \sum_{j=1}^{m} \partial u_I(x_j, y_j) = p_l(0, 0) - \frac{1}{m} \sum_{j=1}^{m} p_l(x_j, y_j)
\]
\[
= -\frac{1}{m} \nabla p_l(0, 0) \cdot \sum_{j=1}^{m} (x_j, y_j).
\]

Using (3.7) and condition (3.1), we obtain
\[
(3.10) \quad |p_l(0, 0) - \frac{1}{m} \sum_{j=1}^{m} \partial u_I(x_j, y_j)| \lesssim h^{1+\alpha} \|u\|_{3, \infty, \omega}.
\]

Next,
\[
\frac{1}{m} \sum_{j=1}^{m} \partial u_I(x_j, y_j) - \partial u(0, 0)
\]
\[
= \frac{1}{m} \sum_{j=1}^{m} \partial (u_I - u)(x_j, y_j) + \frac{1}{m} \sum_{j=1}^{m} [\partial u(x_j, y_j) - \partial u(0, 0)]
\]
\[
= \frac{1}{m} \sum_{j=1}^{m} \partial (u_I - u)(x_j, y_j) + \frac{1}{m} \nabla \partial u(0, 0) \cdot \sum_{j=1}^{m} (x_j, y_j) + R_2(u),
\]
with \(|R_2(u)| \lesssim h^2|u|_{3, \infty, \omega} \). Therefore,

\[
|\frac{1}{m} \sum_{j=1}^{m} \partial_t u_I(x_j, y_j) - \partial_t u(0,0)| \lesssim h^{1+\alpha} \|u\|_{3, \infty, \omega}.
\]

Combining (3.10) and (3.11), we obtain (3.9) for the current case.

Theorem 3.2. The recovery operator \(G_h\) satisfies

\[
G_h v(z) = \sum_{j=1}^{m} c_j \nabla v(x_j, y_j), \quad \sum_{j=1}^{m} c_j = 1,
\]

in all three cases unconditionally. Furthermore, \(c_j > 0\) for

(a) the weighted averaging unconditionally;
(b) the local \(L^2\)-projection under the condition (3.2);
(c) the local discrete least-squares fitting under the condition (3.1).

Proof. The assertion is obvious for the weighted averaging case.

Choose \(v = x + y\). Then the minimizer \(p_1 = 1\) and \(p_2 = 1\) in both cases (b) and (c). Therefore,

\[
G_h v(z) = (1, 1) = \sum_{j=1}^{m} c_j \nabla (x + y) = \sum_{j=1}^{m} c_j (1, 1).
\]

Now we let \(p_l(x, y) = a_0 + a_1 x + a_2 y\). Then for the local discrete least-squares fitting, \(a_i\)'s are given by

\[
\left(\sum_j x_j \sum_j x_j \sum_j y_j \sum_j y_j \right) \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \left(\sum_j \partial_t u_h(x_j, y_j) \right) \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix}.
\]

Note that

\[
\sum_j x_j^2 = O(h^2), \quad \sum_j x_j y_j = O(h^2), \quad \sum_j y_j^2 = O(h^2);
\]

and under condition (3.1),

\[
\sum_j x_j = O(h^{1+\alpha}), \quad \sum_j y_j = O(h^{1+\alpha}).
\]

By scaling argument we see that

\[
a_1 = O(h^{\alpha-1}), \quad a_2 = O(h^{\alpha-1}).
\]

Therefore,

\[
a_0 = \frac{1}{m} \sum_j \partial_t u_h(x_j, y_j) - \frac{a_1}{m} \sum_j x_j - \frac{a_2}{m} \sum_j y_j
\]

\[
= \sum_j c_j \partial_t u_h(x_j, y_j)
\]

with

\[
c_j = \frac{1}{m} + O(h^{2\alpha}) > 0.
\]

A similar argument shows that

\[
c_j = \frac{|\tau_j|}{|\omega|} + O(h^{2\alpha}) > 0
\]
ANALYSIS OF RECOVERY TYPE A POSTERIORI ERROR ESTIMATORS

1147

for the local L^2-projection when condition 3.2 is satisfied.

Under the given condition, the recovered gradient at a vertex z is a convex combination of gradient values on the element patch surrounding z.

4. Superconvergence of the recovery operators

We consider the non-self-adjoint problem: find $u \in H^1(\Omega)$ such that

\[(4.1) \quad B(u, v) = \int_{\Omega} [(D\nabla u + bu) \cdot \nabla v + cu v] = f(v), \quad \forall v \in H^1(\Omega). \]

Here D is a 2×2 symmetric, positive definite matrix, and $f(\cdot)$ is a linear functional. We assume that all the coefficient functions are smooth, and the bilinear form $B(\cdot, \cdot)$ is continuous and satisfies the inf-sup condition on $H^1(\Omega)$. These conditions insure that (4.1) has a unique solution.

The finite element solution $u_h \in V_h$ satisfies

\[(4.2) \quad B(u_h, v_h) = f(v_h), \quad \forall v_h \in V_h. \]

To insure a unique solution for (4.2), we further assume the inf-sup condition of B to be satisfied on V_h.

We define the piecewise constant matrix function D_τ in terms of the diffusion matrix D as follows:

\[D_{\tau ij} = \frac{1}{|\tau|} \int_{\tau} D_{ij} \, dx. \]

Note that D_τ is symmetric and positive definite.

Theorem 4.1. Let the solution of (4.1) satisfy $u \in H^3(\Omega) \cap W^2_\infty(\Omega)$, let u_h be the solution of (4.2) and let $u_I \in V_h$ be the linear interpolation of u. Assume that the triangulation T_h satisfies Condition (3)$^\alpha$. Then

\[\|u_h - u_I\|_{1, \Omega} \lesssim h^{1+\rho}(\|u\|_{3, \Omega} + |u|_{2, \infty, \Omega}), \quad \rho = \min(\alpha, \frac{1}{2}, \frac{\sigma}{2}). \]

Proof. We begin with the identity

\[B(u - u_I, v_h) = \sum_{\tau \in T_h} \int_{\tau} \nabla(u - u_I) \cdot D_\tau \nabla v_h \, dx + \sum_{\tau \in T_h} \int_{\tau} \nabla(u - u_I) \cdot (D - D_\tau) \nabla v_h \, dx \]

\[+ \int_{\Omega} (u - u_I)(b \cdot \nabla v_h + cv) \, dx = I_1 + I_2 + I_3. \]

The first term I_1 is estimated using Lemma 2.1 and I_2 and I_3 can be easily estimated by

\[|I_2| + |I_3| \lesssim h^2 |u|_{2, \Omega} \|v\|_{1, \Omega}. \]

Thus

\[|B(u - u_I, v_h)| \lesssim h^{1+\rho}(\|u\|_{3, \Omega} + |u|_{2, \infty, \Omega}) \|v_h\|_{1, \Omega}. \]

We complete the proof using the inf-sup condition in

\[|u_h - u_I|_{1, \Omega} \lesssim \sup_{v_h \in V_h} \frac{B(u_h - u_I, v_h)}{\|v_h\|_{1, \Omega}} = \sup_{v_h \in V_h} \frac{B(u - u_I, v_h)}{\|v_h\|_{1, \Omega}} \]

\[\lesssim h^{1+\rho}(\|u\|_{3, \Omega} + |u|_{2, \infty, \Omega}). \]

\[\square \]
Theorem 4.2. Let the solution of (4.1) satisfy \(u \in W^2_{\infty}(\Omega) \), let \(u_h \) be the solution of (4.2), and let \(G_h \) be a recovery operator defined by one of the three: (a) the weighted averaging, (b) the local \(L^2 \)-projection, and (c) the local discrete least-squares fitting. Assume that the triangulation \(T_h \) satisfies Condition \((\alpha, \sigma)\). Then
\[
\| \nabla u - G_h u_h \|_{0, \Omega} \lesssim h^{1+\rho} \| u \|_{3, \infty, \Omega}.
\]

Proof. We decompose
\[
\nabla u - G_h u_h = (\nabla u - (\nabla u)_I) + ((\nabla u)_I - G_h u_I) + G_h(u_I - u_h),
\]
where \((\nabla u)_I \in V_h \times V_h\) is the linear interpolation of \(\nabla u \). By the standard approximation theory,
\[
\| \nabla u - (\nabla u)_I \|_{0, \Omega} \lesssim h^2 \| u \|_{3, \Omega}.
\]
We observe that when we pick an element patch on \(T_{1,h} \), both conditions (3.1) and (3.2) are satisfied. Therefore, using Theorem 3.1, we have
\[
\| (\nabla u)_I - G_h u_I \|_{0, \Omega, h} \leq \left(\sum_{\tau \in \Omega_{1,h}} |\tau| \sum_{z \in N_h \cap \tau} |G_h u_I(z) - \nabla u(z)|^2 \right)^{1/2} \lesssim h^{1+\alpha} \| u \|_{3, \infty, \Omega_1,h}^{1/2} \lesssim h^{1+\alpha} \| u \|_{3, \infty, \Omega}.
\]
On the other hand,
\[
\| \nabla u \|_{0, \Omega} \lesssim h \| u \|_{3, \infty, \Omega} \Omega_{2,h}^{1/2} \lesssim h^{1+\sigma/2} \| u \|_{3, \infty, \Omega}
\]
by Condition \((\alpha, \sigma)\). Combining (4.5) with (4.6), we have
\[
\| \nabla u \|_{0, \Omega} \lesssim h^{1+\min(\alpha, \sigma/2)} \| u \|_{3, \infty, \Omega}.
\]
Similarly as in (4.5), we have, by using the fact proved in Theorem 3.2, that \(G_h v(z) \) is a convex combination of \(\nabla v \|_{\tau,d} \)'s:
\[
\| G_h(u_I - u_h) \|_{0, \Omega, h} \leq \left(\sum_{\tau \in T_{1,h}} |\tau| \sum_{z \in N_h \cap \tau} |G_h(u_I - u_h)(z)|^2 \right)^{1/2} \lesssim \left(\sum_{\tau \in T_{1,h}} |\tau| \| \nabla(u_I - u_h) \|_{\tau,d}^2 \right)^{1/2} = \| \nabla(u_I - u_h) \|_{0, \Omega, h} \lesssim h^{1+\rho} \| u \|_{3, \infty, \Omega},
\]
by Theorem 4.1. In addition,
\[
\| G_h(u_I - u_h) \|_{0, \Omega, h} \leq \left(\sum_{\tau \in T_{2,h}} |\tau| \sum_{z \in N_h \cap \tau} |G_h(u_I - u_h)(z)|^2 \right)^{1/2} \lesssim h \| u \|_{3, \infty, \Omega} \left(\sum_{\tau \in T_{2,h}} |\tau| \right)^{1/2} \lesssim h^{1+\sigma/2} \| u \|_{3, \infty, \Omega}.
\]
Combining (4.8) and (4.9) yields
\[
\| G_h(u_I - u_h) \|_{0, \Omega} \lesssim h^{1+\rho} \| u \|_{3, \infty, \Omega}.
\]
The conclusion follows by applying (4.10), (4.11), and (4.12) to the right-hand side of (4.13).

Theorem 4.2 requires the global regularity \(u \in W^3_w(\Omega) \) which is too restrictive in practice. The next theorem turns to interior maximum norm estimates and relaxes the global regularity assumption on the solution.

Theorem 4.3. Consider an interior patch \(\omega_z \subset \subset \Omega_d \subset \Omega_{1,h} \) with \(d = \text{dist}(\omega_z, \partial \Omega_d) \geq Kh \) for some constant \(K > 0 \). Let \(u \in W^3_w(\Omega) \cap W^3_w(\Omega_d) \) be the solution of (4.1), let \(u_h \) be the solution of (4.2), and let \(G_h \) be a recovery operator defined by one of the three: (a) the weighted averaging, (b) the local \(L^2 \)-projection, and (c) the local discrete least-squares fitting. Then we have

\[
|\nabla u - G_h u_h|(z) \lesssim h^{1+\min(1, \alpha)} \|u\|_{3, \omega_z} + d^{-1} h^2 \ln \frac{1}{h} \|u\|_{2, \omega_z} + h^{1+\alpha} \ln \frac{d}{h} \|u\|_{2, \omega_z}.
\]

Proof. We denote \(\mathcal{V}_h^0(\Omega_d) \) as the finite element subspace that has a compact support on \(\Omega_d \) and start from

\[
B(u_h - u_l, \chi) = B(u - u_l, \chi) = F(\chi), \quad \forall \chi \in \mathcal{V}_h^0(\Omega_d),
\]

with

\[
F(\chi) = \sum_{e \in \mathcal{E}_d} \int_{\partial e} \left((\alpha_e - \alpha'_e) \frac{\partial^2 u}{\partial x^2} + (\beta_e - \beta'_e) \frac{\partial^2 u}{\partial x \partial t} \right) \frac{\partial \chi}{\partial t},
\]

where \(\mathcal{E}_d \) is the edge set of \(\Omega_d \). By the same argument as in (2.7), we have

\[
|F(\chi)| \lesssim h^{1+\alpha} \|u\|_{2, \omega_z} \int_{\Omega_d} |\nabla \chi|.
\]

Therefore,

\[
(4.11) \quad |||F|||_{-1, \omega_z} = \sup_{\chi \in \mathcal{V}_h^0(\Omega_d), \|\chi\|_{W^1_w(\Omega_d)} = 1} F(\chi) \lesssim h^{1+\alpha} \|u\|_{2, \omega_z}.
\]

Recall Theorem 1.2 of Schatz-Wahlbin [13] (it is straightforward to verify that all conditions of that theorem are satisfied under the current situation):

\[
|e|_{W^1_w(\Omega_0)} + d^{-1} |e|_{L_\infty(\Omega_0)} \leq C \min_{\chi \in \mathcal{S}_h} \left(|w - \chi|_{W^1_w(\Omega_d)} + d^{-1} |w - \chi|_{L_\infty(\Omega_d)} \right) + C d^{-1+s-N/q} \|e\|_{L_q^{-1}(\Omega_d)} + C \ln \frac{d}{h} \|F|||_{-1, \omega_z},
\]

where \(e = w - w_h \) satisfies \(B(e, \chi) = F(\chi) \). Now, setting \(q = \infty, s = 0, w = 0, \Omega_0 = \omega_z, \) and \(w_h = u_l - u_h \), we obtain

\[
|u_h - u_l|_{1, \omega_z} \lesssim d^{-1} \|u_h - u_l\|_{L_\infty(\Omega_d)} + \ln \frac{d}{h} \|F|||_{-1, \omega_z}.
\]

Applying (4.11) and \(\|u_h - u_l\|_{L_\infty(\Omega_d)} \lesssim h^2 \ln \frac{1}{h} \|u\|_{2, \omega_z} \) results in

\[
(4.12) \quad |u_h - u_l|_{1, \omega_z} \lesssim d^{-1} h^2 \ln \frac{1}{h} \|u\|_{2, \omega_z} + h^{1+\alpha} \ln \frac{d}{h} \|u\|_{2, \omega_z}.
\]

Now we decompose

\[
(\nabla u - G_h u_h)(z) = (\nabla u - G_h u_l)(z) + G_h(u_l - u_h)(z).
\]

By Theorem 3.2, \(G_h v(z) \) is a convex combination of values of \(\nabla v \) on \(\tau \in \omega_z \). Consequently, \(G_h \) is a bounded operator in the sense

\[
|G_h v_h(z)| \lesssim |v_h|_{1, \omega_z}, \quad \forall v_h \in \mathcal{V}_h.
\]
Therefore,
\[(4.13) \quad |(\nabla u - G_h u_h)(z)| \lesssim |(\nabla u - G_h u_I)(z)| + |u_I - u_h|_{1,\infty,\omega_z}^1.\]
The conclusion follows by applying Theorem 3.1 and (4.12) to the right-hand side of (4.13).

Remark. When \(\alpha < 1\), we choose \(d = h^{1-\alpha}\) and obtain
\[|(\nabla u - G_h u_h)(z)| \lesssim h^{1+\alpha} \ln \frac{1}{h}.\]
When \(\alpha \geq 1\), we choose \(d = h^{1-\beta}\) with \(\beta \in (0, 1]\) and obtain
\[|(\nabla u - G_h u_h)(z)| \lesssim h^{1+\beta} \ln \frac{1}{h}.\]
We see that when \(\alpha \geq 1\), the recovery is more accurate as \(z\) leaves the boundary.

5. ASYMPTOTIC EXACTNESS OF THE RECOVERY TYPE ERROR ESTIMATORS

With preparation in the previous sections, it is now straightforward to prove the asymptotic exactness of error estimators based on the recovery operator \(G_h\). The global error estimator is naturally defined by
\[(5.1) \quad \eta_h = \|G_h u_h - \nabla u_h\|_{0,\Omega}.\]

Theorem 5.1. Assume the hypotheses of Theorem 4.2. Furthermore, assume that there exists a constant \(c(u) > 0\) such that
\[(5.2) \quad \|\nabla (u - u_h)\| \geq c(u) h.\]
Then
\[\left| \frac{\eta_h}{\|\nabla (u - u_h)\|_{0,\Omega}} - 1 \right| \lesssim h^\rho, \quad \rho = \min\left(\frac{1}{2}, \frac{\sigma}{2}, \alpha\right).\]

Proof. By Theorem 4.2 and hypothesis (5.2), we have
\[\left| \frac{\eta_h}{\|\nabla (u - u_h)\|_{0,\Omega}} - 1 \right| \leq \frac{\|G_h u_h - \nabla u\|_{0,\Omega}}{\|\nabla (u - u_h)\|_{0,\Omega}} \leq \frac{h^{1+\rho}\|u\|_{3,5,\Omega}}{c(u) h} \lesssim h^{\rho}.\]

The pointwise error estimator at a vertex \(z \in \bar{\tau} \subset \Omega_{1,h}\) is naturally defined by
\[(5.3) \quad \eta_h(z) = |G_h u_h(z) - \nabla u_h(\tau)|.\]
The next theorem shows that the pointwise error estimator is asymptotically exact.

Theorem 5.2. Assume the hypotheses of Theorem 4.3. Let \(z\) be a vertex of elements \(\tau \subset \Omega_{1,h}\) and assume that there exists a constant \(c(u) > 0\) such that
\[(5.4) \quad |\nabla u(z) - \nabla u_h(\tau)| \geq c(u) h.\]
Then we have (a) when \(\alpha \in (0, 1)\),
\[\left| \frac{\eta_h(z)}{|\nabla u(z) - \nabla u_h(\tau)|} - 1 \right| \lesssim h^\alpha, \quad \text{with dist}(z, \partial \Omega_{1,h}) \geq K h^{1-\alpha};\] and (b) when \(\alpha \geq 1\),
\[\left| \frac{\eta_h(z)}{|\nabla u(z) - \nabla u_h(\tau)|} - 1 \right| \lesssim h^\beta, \quad \forall \beta \in (0, 1], \quad \text{with dist}(z, \partial \Omega_{1,h}) \geq K h^{1-\beta}.\]
Proof. We only prove the case when $\alpha \in (0, 1)$. By Theorem 4.3 and hypothesis (5.2), we have

$$\left| \frac{\eta_h^2}{|\nabla u(z) - \nabla u_h(z)|} - 1 \right| \leq \frac{|G_h u_h(z) - \nabla u(z)|}{|\nabla u(z) - \nabla u_h(z)|} \lesssim \frac{h^{1+\alpha}}{h} = h^\alpha.$$

We see that the error estimators (5.1) and (5.3) based on the gradient recovery operator are asymptotically exact under Condition (α, σ). As we mentioned above, this condition is not a very restrictive condition in practice. An automatic mesh generator usually produces some grids which are mildly structured. In practice, a completely unstructured mesh is seldom seen. Our analysis explains in part the good performance of the ZZ error estimator based on the local discrete least-squares fitting for general grids.

ACKNOWLEDGMENTS

The authors would like to thank Professor Wahlbin for the intriguing discussion which led to the proof of Theorem 4.3.

REFERENCES

