Existence and asymptotic stability of relaxation discrete shock profiles

Author:
Mao Ye

Journal:
Math. Comp. **73** (2004), 1261-1296

MSC (2000):
Primary 65M12; Secondary 35L65

Published electronically:
March 3, 2004

MathSciNet review:
2047087

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the asymptotic nonlinear stability of discrete shocks of the relaxing scheme for approximating the general system of nonlinear hyperbolic conservation laws. The existence of discrete shocks is established by suitable manifold construction, and it is shown that weak single discrete shocks for such a scheme are nonlinearly stable in , provided that the sums of the initial perturbations equal zero. These results should shed light on the convergence of the numerical solution constructed by the relaxing scheme for the single shock solution of the system of hyperbolic conservation laws. These results are proved by using both a weighted norm estimate and a characteristic energy method based on the internal structures of the discrete shocks.

**1.**Matthieu Bultelle, Magali Grassin, and Denis Serre,*Unstable Godunov discrete profiles for steady shock waves*, SIAM J. Numer. Anal.**35**(1998), no. 6, 2272–2297 (electronic). MR**1655846**, 10.1137/S0036142996312288**2.**R. J. DiPerna,*Convergence of approximate solutions to conservation laws*, Arch. Rational Mech. Anal.**82**(1983), no. 1, 27–70. MR**684413**, 10.1007/BF00251724**3.**Björn Engquist and Stanley Osher,*One-sided difference approximations for nonlinear conservation laws*, Math. Comp.**36**(1981), no. 154, 321–351. MR**606500**, 10.1090/S0025-5718-1981-0606500-X**4.**Haitao Fan,*Existence of discrete shock profiles of a class of monotonicity preserving schemes for conservation laws*, Math. Comp.**70**(2001), no. 235, 1043–1069. MR**1826576**, 10.1090/S0025-5718-00-01254-0**5.**Jonathan Goodman,*Nonlinear asymptotic stability of viscous shock profiles for conservation laws*, Arch. Rational Mech. Anal.**95**(1986), no. 4, 325–344. MR**853782**, 10.1007/BF00276840**6.**Jonathan Goodman and Zhou Ping Xin,*Viscous limits for piecewise smooth solutions to systems of conservation laws*, Arch. Rational Mech. Anal.**121**(1992), no. 3, 235–265. MR**1188982**, 10.1007/BF00410614**7.**G. H. Hardy, J. E. Littlewood, and G. Pólya,*Inequalities*, Cambridge, at the University Press, 1952. 2d ed. MR**0046395****8.**Guang-Shan Jiang and Shih-Hsien Yu,*Discrete shocks for finite difference approximations to scalar conservation laws*, SIAM J. Numer. Anal.**35**(1998), no. 2, 749–772. MR**1618891**, 10.1137/S0036142996307090**9.**Shi Jin and Zhou Ping Xin,*The relaxation schemes for systems of conservation laws in arbitrary space dimensions*, Comm. Pure Appl. Math.**48**(1995), no. 3, 235–276. MR**1322811**, 10.1002/cpa.3160480303**10.**Gray Jennings,*Discrete shocks*, Comm. Pure Appl. Math.**27**(1974), 25–37. MR**0338594****11.**Peter D. Lax,*Weak solutions of nonlinear hyperbolic equations and their numerical computation*, Comm. Pure Appl. Math.**7**(1954), 159–193. MR**0066040****12.**Peter D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shock waves*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR**0350216****13.**H. L. Liu, J. H. Wang, T. Yang,*Existence of the discrete travelling waves for a relaxing scheme.*Appl. Math. Lett.**10**(1997), 117-122.**14.**Hailiang Liu,*Convergence rates to the discrete travelling wave for relaxation schemes*, Math. Comp.**69**(2000), no. 230, 583–608. MR**1653958**, 10.1090/S0025-5718-99-01132-1**15.**Hailiang Liu, Jinghua Wang, and Tong Yang,*Nonlinear stability and existence of stationary discrete travelling waves for the relaxing schemes*, Japan J. Indust. Appl. Math.**16**(1999), no. 2, 195–224. MR**1696991**, 10.1007/BF03167326**16.**Jian-Guo Liu and Zhou Ping Xin,*Nonlinear stability of discrete shocks for systems of conservation laws*, Arch. Rational Mech. Anal.**125**(1993), no. 3, 217–256. MR**1245071**, 10.1007/BF00383220**17.**Jian-Guo Liu and Zhou Ping Xin,*𝐿¹-stability of stationary discrete shocks*, Math. Comp.**60**(1993), no. 201, 233–244. MR**1159170**, 10.1090/S0025-5718-1993-1159170-7**18.**Tai-Ping Liu,*Hyperbolic conservation laws with relaxation*, Comm. Math. Phys.**108**(1987), no. 1, 153–175. MR**872145****19.**Tai-Ping Liu and Shih-Hsien Yu,*Continuum shock profiles for discrete conservation laws. I. Construction*, Comm. Pure Appl. Math.**52**(1999), no. 1, 85–127. MR**1648425**, 10.1002/(SICI)1097-0312(199901)52:1<85::AID-CPA4>3.3.CO;2-L**20.**Tai-Ping Liu and Shih-Hsien Yu,*Continuum shock profiles for discrete conservation laws. II. Stability*, Comm. Pure Appl. Math.**52**(1999), no. 9, 1047–1073. MR**1694337**, 10.1002/(SICI)1097-0312(199909)52:9<1047::AID-CPA1>3.0.CO;2-4**21.**Andrew Majda and James Ralston,*Discrete shock profiles for systems of conservation laws*, Comm. Pure Appl. Math.**32**(1979), no. 4, 445–482. MR**528630**, 10.1002/cpa.3160320402**22.**Daniel Michelson,*Discrete shocks for difference approximations to systems of conservation laws*, Adv. in Appl. Math.**5**(1984), no. 4, 433–469. MR**766606**, 10.1016/0196-8858(84)90017-4**23.**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****24.**Yiorgos Sokratis Smyrlis,*Existence and stability of stationary profiles of the LW scheme*, Comm. Pure Appl. Math.**43**(1990), no. 4, 509–545. MR**1047334**, 10.1002/cpa.3160430405**25.**Anders Szepessy and Zhou Ping Xin,*Nonlinear stability of viscous shock waves*, Arch. Rational Mech. Anal.**122**(1993), no. 1, 53–103. MR**1207241**, 10.1007/BF01816555**26.**Eitan Tadmor,*The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme*, Math. Comp.**43**(1984), no. 168, 353–368. MR**758188**, 10.1090/S0025-5718-1984-0758188-8

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65M12,
35L65

Retrieve articles in all journals with MSC (2000): 65M12, 35L65

Additional Information

**Mao Ye**

Affiliation:
Institute of Mathematics Science and Department of Mathematics, Chinese University of Hong Kong, Hong Kong

Address at time of publication:
School of Computer Science and Engineering, University of Electronic Science and Technology of China, Sichuan, China 610054

Email:
yem_mei29@hotmail.com

DOI:
https://doi.org/10.1090/S0025-5718-04-01638-2

Keywords:
Relaxing scheme,
hyperbolic systems of conservation laws,
discrete shock profiles,
nonlinear stability

Received by editor(s):
September 3, 2002

Published electronically:
March 3, 2004

Additional Notes:
This work was supported by the Youth Science and Technology Foundation, UESTC YF020801.

Article copyright:
© Copyright 2004
American Mathematical Society