Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

A locking-free Reissner-Mindlin quadrilateral element


Authors: Huo-Yuan Duan and Guo-Ping Liang
Journal: Math. Comp. 73 (2004), 1655-1671
MSC (2000): Primary 65N30
Published electronically: November 24, 2003
MathSciNet review: 2059730
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: On arbitrary regular quadrilaterals, a new finite element method for the Reissner-Mindlin plate is proposed, where both transverse displacement and rotation are approximated by isoparametric bilinear elements, with local bubbles enriching rotation, and a local reduction operator is applied to the shear energy term. This new method gives optimal error bounds, uniform in the thickness of the plate, for both transverse displacement and rotation with respect to $H^1$and $L^2$ norms.


References [Enhancements On Off] (What's this?)

  • 1. K.J. Bathe and E.N. Dvorkin, A four-node plate bending element based on Mindlin-Reissner theory and a mixed interpolation, Internat. J. Numer. Methods Engrg., 21(1985), pp. 367-383.
  • 2. K.J. Bathe and F. Brezzi, On the convergence of a four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation, MAFELAP, V, J.R. Whiteman, ed., London, (1985), pp. 491-503. MR 87f:65125
  • 3. R. Durán and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp., 58(1992), pp. 561-573. MR 92f:65135
  • 4. M. Lyly, R. Stenberg and T. Vihinen, A stable bilinear element for the Reissner-Mindlin plate model, Comput. Methods Appl. Mech. Engrg, 110(1993), pp. 343-357. MR 94k:73072
  • 5. R.S. Falk and Tong Tu, Locking-free finite elements for the Reissner-Mindlin plate, Math. Comp., 69(1999), pp. 911-928. MR 2000j:74088
  • 6. T.-X. Zhou, The partial projection method in the finite element discretization of the Reissner-Mindlin plate, J. Comput. Math, 13(1995), pp. 172-191. MR 96m:73052
  • 7. F. Brezzi, M. Fortin and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models and Methods in Appl. Sci, 1(1991), pp. 125-151. MR 92e:73030
  • 8. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991. MR 92d:65187
  • 9. D.N. Arnold and R.S. Falk, The boundary layer for the Reissner-Mindlin plate model, SIAM. J. Math. Anal., 21(1990), pp. 281-312. MR 91c:73053
  • 10. H.-Y. Duan and G.-P. Liang, Analysis of some stabilized low-order mixed finite element methods for Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 191(2001), pp. 157-179. MR 2002h:74071
  • 11. R. Stenberg, A new finite element formulation for the plate bending problem, in: Asymptotic Methods for Elastic Structures, Eds: Ciarlet/Trabucho/Viano, Walter de Gruyter & Co., Berlin, 1995, pp. 209-221. MR 96k:73084
  • 12. J. Pitkäranta and M. Suri, Design principles and error analysis for reduced-shear plate-bending finite elements, Numer. Math., 75(1996), pp. 223-266. MR 98c:73078
  • 13. J. Pitkäranta, Analysis of some low-order finite element schemes for Mindlin-Reissner and Kirchhoff plates, Numer. Math., 53(1988), pp. 237-254. MR 89f:65126
  • 14. P. Destuynder, Mathematical Analysis of Thin Shell Problems, Masson, Paris, 1991.
  • 15. P. Peisker and D. Braess, Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates, M$^2$AN Math. Model. Numer. Anal., 26(1992), pp. 557-574. MR 93j:73070
  • 16. F. Auricchio and C. Lovadina, Analysis of kinematic linked interpolation methods for Reissner-Mindlin plate problems, Comput. Methods Appl. Mech. Engrg., 190(2001), pp. 2465-2482.MR 2002b:74061
  • 17. R. Durán, A. Ghioldi and N. Wolanski, A finite element method for the Reissner-Mindlin plate model, SIAM J. Numer. Anal., 28(1991), pp. 1004-1014. MR 92f:73046
  • 18. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 58:25001
  • 19. K.-J. Bathe, Finite Element Procedures, Prentice Hall, 1996. MR 87j:65144
  • 20. A. Iosilevich, K.-J. Bathe and F. Brezzi, Numerical Inf-Sup analysis of MITC plate bending elements, in: Plates and Shells, CRM Proceedings and Lecture Notes, M. Fortin (ed.), AMS, Providence, Vol. 21, 1999, pp. 225-242. MR 2000d:74076
  • 21. Z.-C. Shi, A convergence condition for the quadrilateral Wilson element, Numer. Math., 44(1984), pp. 349-361. MR 86d:65151
  • 22. M. Lyly and R. Stenberg, Stabilized MITC plate bending elements, in: M. Papadrakakis and B.H.V. Topping, eds., Advances in Finite Element Techniques, CIVIL-COMP Ltd, Edinburgh, Scotland, 1994, pp. 11-16.
  • 23. F. Brezzi and M. Fortin, Numerical approximation of Reissner-Mindlin plates, Math. Comp., 47(1986), pp. 151-158. MR 87g:73057
  • 24. S.L. Weissman and R.L. Taylor, Resultant fields for mixed plate bending elements, Comput. Methods Appl. Mech. Engrg., 79(1990), pp. 321-355. MR 91a:73071
  • 25. O.C. Zienkiewicz, Z. Xu, L.F. Zeng, A. Samuelsson and N.E. Wiberg, Linked interpolation for Reissner-Mindlin plate elements: Part I--A simple quadrilateral; Part III--An alternative quadrilateral, Int. J. Numer. Methods Engrg., 36(1993), pp. 3043-3056; 37(1994), pp. 1437-1443.
  • 26. R. L. Taylor and F. Auricchio, Linked interpolation for Reissner-Mindlin plate elements: Part II-a simple triangle, Int. J. Numer Methods Engrg., 36(1993), pp. 3057-3066.
  • 27. F. Auricchio and C. Lovadina, Partial selected reduced integration schemes and kinematically linked interpolations for plate bending problems, Math. Model. Methods Appl. Sci., 9(1999), pp. 693-722. MR 2001c:74080
  • 28. C. Chapelle and R. Stenberg, An optimal low-order lock-free finite element method for Reissner- Mindlin plates, Math. Models and Methods in Applied Sciences, 8(1998), pp. 407-430. MR 99d:73088
  • 29. F. Brezzi, K.J. Bathe and M. Fortin, Mixed-interpolated elements for Mindlin-Reissner plate, Internat. J. Numer. Methods Engrg., 28(1989), pp. 1787-1801. MR 90g:73090
  • 30. D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plates, SIAM J. Numer. Anal., 26(1989), pp. 1276-1290. MR 91c:65068
  • 31. J. Pitkäranta and R. Stenberg, Error bounds for the approximation of Stokes problem with bilinear/constant elements on irregular quadrilateral meshes, in: J. R. Whiteman, ed., The Mathematics of Finite Elements and Applications, V. MAFELAP, Academic Press, New-York, 1985, pp. 325-334.
  • 32. K. J. Bathe and F. Brezzi, A simplified analysis of two plate bending elements-the MITC4 and MITC9 elements, in: G.N. Pande and J. Middleton, eds., NUMETA 87, Vol. 1, Numerical Techniques for Engineering Analysis and Design, Martinus Nijhoff, Amsterdam, 1987.
  • 33. H.-Y Duan and G.-P. Liang, Nonconforming elements in least-squares mixed finite element methods, Math. Comp. 73(2004), pp. 1-18.
  • 34. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. MR 88b:65129
  • 35. M. Lyly and R. Stenberg, Stabilized finite element methods for Reissner-Mindlin plates (in: the web page of the second author)
  • 36. J. P. Wang and T. Mathew, Mixed finite element methods over quadrilaterals, in: Proceedings of 3rd Internat. Conference on Advances in Numerical Methods and Applications, J.T. Dimov, B. Sendov, and P. Vassilevski, eds., World Scientific, River Edge, NJ, 1994, pp. 203-214.
  • 37. R. Durán, L. Hervella-Nieto, E. Liberman, R. Rodriguez and J. Solomin, Approximation of the vibration modes of a plate by Reissner-Mindlin equation, Math. Comp., 68(1999), pp. 1447-1463. MR 99m:73045
  • 38. C. Lovadina, Analysis of a mixed finite element method for the Reissner-Mindlin plate problems, Comput. Methods Appl. Mech. Engrg., 163(1998), pp. 71-85. MR 2000g:74076
  • 39. R. Durán and E. Liberman, On the convergence of a triangular mixed finite element method for Reissner-Mindlin plates, M3AS Math. Models Methods Appl. Sci., 6(1996), pp. 339-352. MR 97e:73064
  • 40. H.-Y. Duan, Studies On Mixed Finite Element Methods, Ph.D. thesis, Institute of Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, March, 2002.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30

Retrieve articles in all journals with MSC (2000): 65N30


Additional Information

Huo-Yuan Duan
Affiliation: Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, Peoples Republic of China
Email: dhymath@yahoo.com.cn, hyduan@lsec.cc.ac.cn

Guo-Ping Liang
Affiliation: Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, Peoples Republic of China
Email: guoping@math03.math.ac.cn, ling@fegensoft.com

DOI: https://doi.org/10.1090/S0025-5718-03-01619-3
Keywords: Reissner-Mindlin plates, finite element method
Received by editor(s): July 19, 2002
Received by editor(s) in revised form: March 17, 2003
Published electronically: November 24, 2003
Article copyright: © Copyright 2003 American Mathematical Society