Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Deciding the nilpotency of the Galois group by computing elements in the centre


Authors: Pilar Fernandez-Ferreiros and M. Angeles Gomez-Molleda
Journal: Math. Comp. 73 (2004), 2043-2060
MSC (2000): Primary 12Y05; Secondary 68W30, and, 11R32
DOI: https://doi.org/10.1090/S0025-5718-03-01620-X
Published electronically: November 3, 2003
MathSciNet review: 2059750
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new algorithm for computing the centre of the Galois group of a given polynomial $f \in \mathbb{Q} [x]$ along with its action on the set of roots of $f$, without previously computing the group. We show that every element in the centre is representable by a family of polynomials in $\mathbb{Q} [x]$. For computing such polynomials, we use quadratic Newton-lifting and truncated expressions of the roots of $f$ over a $p$-adic number field. As an application we give a method for deciding the nilpotency of the Galois group. If $f$ is irreducible with nilpotent Galois group, an algorithm for computing it is proposed.


References [Enhancements On Off] (What's this?)

  • 1. V. Acciaro, J. Klüners, Computing automorphisms of abelian number fields, Math. Comp. 68, 227, 1179-1186, 1999. MR 99i:11099
  • 2. E. Bach, J. Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65, 1717-1735, 1996. MR 97a:11143
  • 3. G. E. Collins, M. E. Encarnación, Efficient racional number reconstruction, J. Symb. Comput. 20, 287-297, 1995. MR 97c:11116
  • 4. H. Darmon, D. Ford, Computational verification of $M_{11}$ and $M_{12}$ as Galois group over ${\mathbb Q}$, Comm. Algebra 17, 2941-2943, 1989. MR 91b:11146
  • 5. J. D. Dixon, Exact solution of linear equations using p-adic expansions, Numer. Math. 40, 137-141, 1982.MR 83m:65025
  • 6. J. D. Dixon, Computing subfields in algebraic number fields, J. Austral. Math. Society 49, 434-448, 1990.MR 91h:11156
  • 7. P. Fernández-Ferreirós, M.A. Gómez-Molleda, A method for deciding whether the Galois group is abelian, Proc. ISSAC 2000, C. Traverso ed., ACM Press, 2000. MR 2002e:12004
  • 8. The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.2; Aachen, St. Andrews, 1999. (http://www-gap.dcs.st-and.ac.uk/~gap)
  • 9. J. Klüners, Über die Berechnung von Automorphismen und Teilkörpern algebraischer Zahlkörper, Dissertation Ph. D. Thesis, Berlin, 1997.
  • 10. J. C. Lagarias, A. M. Odlyzko, Effective version of the Chebotarev density theorem, Algebraic number fields (L-functions and Galois properties), A. Fröhlich ed., pp. 409-464, Academic Press, London, 1977.MR 56:5506
  • 11. S. Landau, Factoring polynomials over algebraic number fields, SIAM J. Comput. 14, 184-195, 1985.MR 86d:11102
  • 12. K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11, 257-262, 1964.MR 29:3465
  • 13. G. Malle, B.H. Matzat, Inverse Galois Theory, Springer Monographs in Mathematics, 2000.MR 2000k:12004
  • 14. D. A. Marcus, Number fields, Universitext, Springer Verlag, 1977. MR 56:15601
  • 15. P. Stevenhagen, H. W. Lenstra Jr., Chebotarëv and his density theorem, The Mathematical Intelligencer 18, no. 2, 1996. MR 97e:11144

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 12Y05, 68W30, and, 11R32

Retrieve articles in all journals with MSC (2000): 12Y05, 68W30, and, 11R32


Additional Information

Pilar Fernandez-Ferreiros
Affiliation: Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain
Email: ferreirp@matesco.unican.es

M. Angeles Gomez-Molleda
Affiliation: Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain
Email: gomezma@matesco.unican.es

DOI: https://doi.org/10.1090/S0025-5718-03-01620-X
Received by editor(s): May 24, 2002
Received by editor(s) in revised form: March 16, 2003
Published electronically: November 3, 2003
Additional Notes: Partially supported by the grant DGESIC PB 98-0713-C02-02 (Ministerio de Educacion y Cultura)
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society