Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

On the error estimates for the rotational pressure-correction projection methods


Authors: J. L. Guermond and Jie Shen
Translated by:
Journal: Math. Comp. 73 (2004), 1719-1737
MSC (2000): Primary 65M12, 35Q30, 76D05
Published electronically: December 19, 2003
MathSciNet review: 2059733
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the rotational form of the pressure-correction method that was proposed by Timmermans, Minev, and Van De Vosse. We show that the rotational form of the algorithm provides better accuracy in terms of the $H^1$-norm of the velocity and of the $L^2$-norm of the pressure than the standard form.


References [Enhancements On Off] (What's this?)

  • 1. David L. Brown, Ricardo Cortez, and Michael L. Minion.
    Accurate projection methods for the incompressible Navier-Stokes equations.
    J. Comput. Phys., 168(2):464-499, 2001. MR 2002a:76112
  • 2. A. J. Chorin.
    Numerical solution of the Navier-Stokes equations.
    Math. Comp., 22:745-762, 1968. MR 39:3723
  • 3. A. J. Chorin.
    On the convergence of discrete approximations to the Navier-Stokes equations.
    Math. Comp., 23:341-353, 1969. MR 39:3724
  • 4. W. E and J.G. Liu.
    Projection method I: Convergence and numerical boundary layers.
    SIAM J. Numer. Anal., 32:1017-1057, 1995. MR 96e:65061
  • 5. W. E and J.G. Liu.
    Projection method. III. Spatial discretization on the staggered grid.
    Math. Comp., 71(237):27-47, 2002. MR 2002k:65155
  • 6. K. Goda.
    A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows.
    J. Comput. Phys., 30:76-95, 1979.
  • 7. J.-L. Guermond.
    Un résultat de convergence à l'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection.
    Modél. Math. Anal. Numér. (M2AN), 33(1):169-189, 1999. MR 2000k:65171
  • 8. J.L. Guermond and Jie Shen.
    Velocity-correction projection methods for incompressible flows.
    To appear in SIAM J. Numer. Anal.
  • 9. G. E. Karniadakis, M. Israeli, and S. A. Orszag.
    High-order splitting methods for the incompressible Navier-Stokes equations.
    J. Comput. Phys., 97:414-443, 1991. MR 92h:76066
  • 10. S. A. Orszag, M. Israeli, and M. Deville.
    Boundary conditions for incompressible flows.
    J. Sci. Comput., 1:75-111, 1986.
  • 11. R. Rannacher.
    On Chorin's projection method for the incompressible Navier-Stokes equations.
    Lecture Notes in Mathematics, vol. 1530, 1991. MR 95a:65149
  • 12. Jie Shen.
    On error estimates of the projection methods for the Navier-Stokes equations: first-order schemes.
    SIAM J. Numer. Anal., 29:57-77, 1992. MR 92m:35213
  • 13. Jie Shen.
    On pressure stabilization method and projection method for unsteady Navier-Stokes equations.
    In R. Vichnevetsky, D. Knight, and G. Richter, editors, Advances in Computer Methods for Partial Differential Equations, pages 658-662, IMACS, 1992.
  • 14. Jie Shen.
    Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order equations by using Legendre polynomials.
    SIAM J. Sci. Comput., 15:1489-1505, 1994. MR 95j:65150
  • 15. Jie Shen.
    On error estimates of projection methods for the Navier-Stokes equations: second-order schemes.
    Math. Comp, 65:1039-1065, July 1996. MR 96j:65091
  • 16. J. C. Strikwerda and Y. S. Lee.
    The accuracy of the fractional step method.
    SIAM J. Numer. Anal., 37(1):37-47, 1999. MR 2000h:65127
  • 17. R. Temam.
    Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires ii.
    Arch. Rat. Mech. Anal., 33:377-385, 1969. MR 39:5968
  • 18. R. Temam.
    Navier-Stokes Equations: Theory and Numerical Analysis.
    North-Holland, Amsterdam, 1984. MR 58:29439
  • 19. L. J. P. Timmermans, P. D. Minev, and F. N. Van De Vosse.
    An approximate projection scheme for incompressible flow using spectral elements.
    Int. J. Numer. Methods Fluids, 22:673-688, 1996.
  • 20. J. van Kan.
    A second-order accurate pressure-correction scheme for viscous incompressible flow.
    SIAM J. Sci. Stat. Comput., 7:870-891, 1986. MR 87h:76008

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65M12, 35Q30, 76D05

Retrieve articles in all journals with MSC (2000): 65M12, 35Q30, 76D05


Additional Information

J. L. Guermond
Affiliation: LIMSI (CNRS-UPR 3152), BP 133, 91403, Orsay, France
Email: guermond@limsi.fr

Jie Shen
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: shen@math.purdue.edu

DOI: https://doi.org/10.1090/S0025-5718-03-01621-1
Keywords: Navier-Stokes equations, projection methods, fractional step methods, incompressibility, finite elements, spectral approximations
Received by editor(s): February 11, 2002
Received by editor(s) in revised form: March 2, 2003
Published electronically: December 19, 2003
Additional Notes: The work of the second author is partially supported by NFS grants DMS-0074283 and DMS-0311915. Part of the work was completed while this author was a CNRS “Poste Rouge” visitor at LIMSI
Article copyright: © Copyright 2003 American Mathematical Society