Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Algebraic algorithms for the analysis of mechanical trusses


Authors: I. Babuska and S. A. Sauter
Journal: Math. Comp. 73 (2004), 1601-1622
MSC (2000): Primary 65T50, 06B10, 35J55
Published electronically: April 27, 2004
MathSciNet review: 2059728
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Infinite periodic lattices can be used as models for analyzing and understanding various properties of mechanical truss constructions with periodic structures. For infinite lattices, the problems of connectivity and stability are nontrivial from the mathematical point of view and have not been addressed adequately in the literature. In this paper, we will present a set of algebraic algorithms, which are based on ideal theory, to solve such problems.

For the understanding of the notion ``complicated three-dimensional lattices'', it is essential to have this paper with colored figures.


References [Enhancements On Off] (What's this?)

  • 1. L. Asimow and B. Roth, The rigidity of graphs, Trans. Amer. Math. Soc. 245 (1978), 279–289. MR 511410 (80i:57004a), http://dx.doi.org/10.1090/S0002-9947-1978-0511410-9
  • 2. I. Babuska and S. A. Sauter. Efficient Solution of Lattice Equations by the Recovery Method. Part 1: Scalar Elliptic Problems. TICAM REPORT 02-39, University of Texas at Austin, 2002.
  • 3. William C. Brown, Matrices over commutative rings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 169, Marcel Dekker Inc., New York, 1993. MR 1200234 (93k:15028)
  • 4. G. Constantinides and A. C. Payatakes.
    A Three Dimensional Network Model for Consolidated Porous Media. Basic Studies.
    Chem. Eng. Comm., 81:55-81, 1980.
  • 5. H. Crapo and W. Whiteley.
    Encyclopedia of Mathematics and Its Applications, chapter ``The Geometry of Rigid Structures''.
    Cambridge Univ. Press, 1989.
  • 6. V. Deshpande, N. Fleck, and M. Ashby.
    Effective properties of the octet truss material.
    Technical report, Cambridge Univ., Dept. Eng., 2000.
  • 7. I. Fatt.
    The Network Model of Porous Media.
    Trans. Am. Inst. Mem. Metall Pet. Eng., 207:144-181, 1956.
  • 8. L. Gibson and M. Ashby.
    Cellular Solids, Structures and Properties.
    Pergamon Press, Exeter, 1989.
  • 9. M. L. Glasser and J. Boersma, Exact values for the cubic lattice Green functions, J. Phys. A 33 (2000), no. 28, 5017–5023. MR 1779082 (2001i:82022), http://dx.doi.org/10.1088/0305-4470/33/28/306
  • 10. J. C. Hansen, S. Chien, R. Skalog, and A. Hoger.
    A Classic Network Model Based on the Structure of the Red Blood Cell Membrane.
    Biophy. J., 70:146-166, 1996.
  • 11. G. S. Joyce, On the cubic lattice Green functions, Proc. Roy. Soc. London Ser. A 445 (1994), no. 1924, 463–477. MR 1276913 (95j:33041), http://dx.doi.org/10.1098/rspa.1994.0072
  • 12. G. Laman, On graphs and rigidity of plane skeletal structures, J. Engrg. Math. 4 (1970), 331–340. MR 0269535 (42 #4430)
  • 13. A. A. Maradudin, E. W. Montroll, G. H. Weiss, Robert Herman, and H. W. Milnes, Green’s functions for monatomic simple cubic lattices, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in-4 deg. (2) 14 (1960), no. 7, 176. MR 0116656 (22 #7440)
  • 14. P. G. Martinson.
    Fast Multiscale Methods for Lattice Equations.
    PhD thesis, University of Texas at Austin, 2002.
  • 15. A. Noor.
    Continuum modelling for repetitive lattice structures.
    Appl. Mech. Rev., 41(7):285-296, 1988.
  • 16. M. Ostoja-Starzewski.
    Lattice Models in Micromechanics.
    App. Mech. Review, 55(1):35-60, 2002.
  • 17. M. Ostoja-Starzewski, P. Y. Shang, and K. Alzebdoh.
    Spring Network Models in Elasticity and Fractures of Composites and Polycristals.
    Comp. Math. Sci., 7:89-93, 1996.
  • 18. G. I. Pshenichnov, A theory of latticed plates and shells, Series on Advances in Mathematics for Applied Sciences, vol. 5, World Scientific Publishing Co. Inc., River Edge, NJ, 1993. MR 1336594 (97i:73001)
  • 19. Rudolf Zurmühl and Sigurd Falk, Matrizen und ihre Anwendungen für angewandte Mathematiker, Physiker und Ingenieure. Teil 1, 5th ed., Springer-Verlag, Berlin, 1984 (German). Grundlagen. [Foundations]. MR 758259 (86a:15002)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65T50, 06B10, 35J55

Retrieve articles in all journals with MSC (2000): 65T50, 06B10, 35J55


Additional Information

I. Babuska
Affiliation: University of Texas at Austin, ICES, 1 University Station, C0200, Austin, Texas 78712-0027
Email: babuska@ticam.utexas.edu

S. A. Sauter
Affiliation: University of Zurich, Institute of Mathematics, Winterhurestr. 190, CH 8057 Zurich, Switzerland
Email: stas@math.unizh.ch

DOI: http://dx.doi.org/10.1090/S0025-5718-04-01645-X
PII: S 0025-5718(04)01645-X
Received by editor(s): September 4, 2002
Received by editor(s) in revised form: March 19, 2003
Published electronically: April 27, 2004
Article copyright: © Copyright 2004 American Mathematical Society