Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero

Authors: Amod Agashe and William Stein; with an Appendix by J. Cremona; B. Mazur
Journal: Math. Comp. 74 (2005), 455-484
MSC (2000): Primary 11G40; Secondary 11F11, 11G10, 14K15, 14H25, 14H40
Published electronically: May 18, 2004
MathSciNet review: 2085902
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank $0$ abelian varieties $A_f$ that are optimal quotients of $J_0(N)$ attached to newforms. We prove theorems about the ratio $L(A_f,1)/\Omega_{A_f}$, develop tools for computing with $A_f$, and gather data about certain arithmetic invariants of the nearly $20,000$ abelian varieties $A_f$ of level $\leq 2333$. Over half of these $A_f$ have analytic rank $0$, and for these we compute upper and lower bounds on the conjectural order of  $\mbox{ {\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n} \selectfont Sh}}(A_f)$. We find that there are at least $168$ such $A_f$ for which the Birch and Swinnerton-Dyer conjecture implies that $\mbox{ {\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n} \selectfont Sh}}(A_f)$is divisible by an odd prime, and we prove for $37$ of these that the odd part of the conjectural order of $\mbox{ {\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n} \selectfont Sh}}(A_f)$ really divides $\char93 \mbox{ {\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n} \selectfont Sh}}(A_f)$ by constructing nontrivial elements of $\mbox{ {\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n} \selectfont Sh}}(A_f)$ using visibility theory. We also give other evidence for the conjecture. The appendix, by Cremona and Mazur, fills in some gaps in the theoretical discussion in their paper on visibility of Shafarevich-Tate groups of elliptic curves.

References [Enhancements On Off] (What's this?)

  • [Aga99] A. Agashe, On invisible elements of the Tate-Shafarevich group, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 5, 369-374. MR 2000e:11083
  • [AS] A. Agashe and W.A. Stein, Appendix to Joan-C. Lario and René Schoof: Some computations with Hecke rings and deformation rings, to appear in J. Exp. Math.
  • [AS02] A. Agashe and W.A. Stein, Visibility of Shafarevich-Tate Groups of Abelian Varieties, to appear in J. of Number Theory (2002).
  • [AS04] A. Agashe and W.A. Stein, The Manin constant, congruence primes, and the modular degree, preprint, (2004).
  • [BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265, Computational algebra and number theory (London, 1993).
  • [Bir71] B.J. Birch, Elliptic curves over ${\mathbf{Q}}$: A progress report, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence, R.I., 1971, pp. 396-400. MR 47:3395
  • [BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Springer-Verlag, Berlin, 1990. MR 91i:14034
  • [Cas62] J.W.S. Cassels, ``Arithmetic on curves of genus $1$. III. The Tate-Safarevic and Selmer groups'', Proc. London Math. Soc. (3) 12 (1962), 259-296. MR 29:1212
  • [Cre97] J.E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997. MR 99e:11068
  • [CM] J.E. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Experiment. Math. 9 (2000), no. 1, 13-28.
  • [CS01] B. Conrad and W.A. Stein, Component groups of purely toric quotients, Math. Res. Lett. 8 (2001), no. 5-6, 745-766. MR 2003f:11087
  • [Del01] C. Delaunay, Heuristics on Tate-Shafarevitch groups of elliptic curves defined over $\bf {Q}$, Experiment. Math. 10 (2001), no. 2, 191-196.
  • [DI95] F. Diamond and J. Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem, Providence, RI, 1995, pp. 39-133. MR 97g:11044
  • [Edi91] B. Edixhoven, On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Texel, 1989), Birkhäuser Boston, Boston, MA, 1991, pp. 25-39. MR 92a:11066
  • [Eme01] M. Emerton, Optimal quotients of modular Jacobians. Preprint.
  • [FpS:01] E.V. Flynn, F. Leprévost, E.F. Schaefer, W.A. Stein, M. Stoll, and J.L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675-1697.
  • [Fon75] J-M. Fontaine, Groupes finis commutatifs sur les vecteurs de Witt, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), Ai, A1423-A1425. MR 51:10353
  • [Gro94] B.H. Gross, ${L}$-functions at the central critical point, Motives (Seattle, WA, 1991), Amer. Math. Soc., Providence, RI, 1994, pp. 527-535. MR 95a:11060
  • [Gro68] A. Grothendieck, Le groupe de Brauer. III. Exemples et compléments, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 88-188. MR 39:5586c
  • [Gro72] A. Grothendieck, Modèles de Néron et monodromie in Groupes de monodromie en géométrie algébrique. I, Springer-Verlag, Berlin, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 I), Dirigé par A. Grothendieck. Vol. 288. MR 50:7134
  • [GZ86] B. Gross and D. Zagier, Heegner points and derivatives of ${L}$-series, Invent. Math. 84 (1986), no. 2, 225-320. MR 87j:11057
  • [Kat81] N.M. Katz, Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), no. 3, 481-502. MR 82d:14025
  • [KL89] V.A. Kolyvagin and D.Y. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 (1989), no. 5, 171-196. MR 91c:11032
  • [KL92] V.A. Kolyvagin and D.Y. Logachev, Finiteness of $\mbox{ {\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n} \selectfont Sh}}$ over totally real fields, Math. USSR Izvestiya 39 (1992), no. 1, 829-853. MR 93d:11063
  • [KS00] D.R. Kohel and W.A. Stein, Component Groups of Quotients of $J_0(N)$, Proceedings of the 4th International Symposium (ANTS-IV), Leiden, Netherlands, July 2-7, 2000 (Berlin), Springer, 2000.
  • [Lan91] S. Lang, Number theory. III, Springer-Verlag, Berlin, 1991, Diophantine geometry. MR 93a:11048
  • [LO85] H. W. Lenstra, Jr. and F. Oort, Abelian varieties having purely additive reduction, J. Pure Appl. Algebra 36 (1985), no. 3, 281-298. MR 86e:14020
  • [LS02] Joan-C. Lario and René Schoof, Some computations with Hecke rings and deformation rings, Experiment. Math. 11 (2002), no. 2, 303-311, with an appendix by Amod Agashe and William Stein. MR 2004b:11072
  • [Maz72] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266. MR 56:3020
  • [Maz77] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 33-186 (1978). MR 80c:14015
  • [Maz78] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129-162. MR 80h:14022
  • [MT74] B. Mazur and J. Tate, Points of order $13$ on elliptic curves, Invent. Math. 22 (1973/74), 41-49. MR 50:327
  • [Mil86] J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 103-150.
  • [Ogg73] A. P. Ogg, Rational points on certain elliptic modular curves, Analytic number theory (Proc. Sympos. Pure Math., Vol XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 221-231. MR 49:2743
  • [PS99] B. Poonen and M. Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2) 150 (1999), no. 3, 1109-1149. MR 2000m:11048
  • [Shi73] G. Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), no. 3, 523-544. MR 47:6709
  • [Shi94] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1. MR 95e:11048
  • [Ste82] G. Stevens, Arithmetic on modular curves, Birkhäuser Boston Inc., Boston, Mass., 1982. MR 87b:11050
  • [Ste00] W.A. Stein, Explicit approaches to modular abelian varieties, Ph.D. thesis, University of California, Berkeley (2000).
  • [Ste02a] W.A. Stein, An introduction to computing modular forms using modular symbols, to appear in an MSRI Proceedings (2002).
  • [Ste02b] W.A. Stein, Shafarevich-Tate groups of nonsquare order, Proceedings of MCAV 2002, Progress of Mathematics (to appear).
  • [Stu87] J. Sturm, On the congruence of modular forms, Number theory (New York, 1984-1985), Springer, Berlin, 1987, pp. 275-280. MR 88h:11031
  • [Tat63] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288-295. MR 31:168
  • [Tat66] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1966 (reprinted in 1995), Exp. No. 306, 415-440.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11G40, 11F11, 11G10, 14K15, 14H25, 14H40

Retrieve articles in all journals with MSC (2000): 11G40, 11F11, 11G10, 14K15, 14H25, 14H40

Additional Information

Amod Agashe
Affiliation: Department of Mathematics, University of Texas, Austin, Texas 78712

William Stein
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

J. Cremona
Affiliation: Division of Pure Mathematics, School of Mathematical Sciences, University of Nottingham, England

B. Mazur
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts

Keywords: Birch and Swinnerton-Dyer conjecture, modular abelian variety, visibility, Shafarevich-Tate groups
Received by editor(s): May 17, 2002
Received by editor(s) in revised form: June 9, 2003
Published electronically: May 18, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society