Determinant formulas for class numbers in function fields

Authors:
Hwanyup Jung, Sunghan Bae and Jaehyun Ahn

Journal:
Math. Comp. **74** (2005), 953-965

MSC (2000):
Primary 11R58, 11R60

Published electronically:
May 24, 2004

MathSciNet review:
2114658

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, by extending Kucera's idea to the function field case, we obtain several determinant formulas involving the real class number and the relative class number of any subfield of cyclotomic function fields. We also provide several examples using these determinant formulas.

**1.**J. Ahn, S. Bae and H. Jung,*Cyclotomic units and Stickelberger ideals of global function fields.*Trans. Amer. Math. Soc.**355**(2003), no. 5, 1803-1818.**2.**S. Bae, H. Jung and J. Ahn,*Class numbers of some abelian extensions of rational function fields.*Math. Comp.**73**(2004), no. 245, 377-386.**3.**S. Bae and P. Kang,*Class numbers of cyclotomic function fields.*Acta Arith.**102**(2002), no. 3, 251-259. MR**2002m:11098****4.**S. Galovich and M. Rosen,*Units and class group in cyclotomic function fields.*J. Number Theory**14**(1982), 156-184. MR**84b:12008****5.**F. Harrop,*Circular units of function fields.*Trans. Amer. Math. Soc.**341**(1994), 405-421. MR**94c:11106****6.**H. Jung and J. Ahn,*On the relative class number of cyclotomic function fields.*Acta Arith.**107**(2003), no. 1, 91-101. MR**2003j:11143****7.**H. Jung and J. Ahn,*Demjanenko matrix and recursion formula for relative class number over function fields.*J. Number Theory**98**(2003), no. 1, 55-66. MR**2003i:11170****8.**R. Kucera,*Formulae for the relative class number of an imaginary abelian field in the form of a determinant.*Nagoya Math. J.**163**(2001), 167-191. MR**2002j:11129****9.**M. Rosen,*A note on the relative class number in function fields.*Proc. Amer. Math. Soc.**125**(1997), no. 5, 1299-1303. MR**97g:11133****10.**L. Washington, Introduction to cyclotomic fields. Second edition. GTM 83. Springer-Verlag, New York, 1997. MR**97h:11130****11.**L. Yin,*Stickelberger ideals and relative class numbers in function fields.*J. Number Theory**81**(2000), no. 1, 162-169.MR**2001d:11114**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11R58,
11R60

Retrieve articles in all journals with MSC (2000): 11R58, 11R60

Additional Information

**Hwanyup Jung**

Affiliation:
Department of Mathematics Education, Chungbuk National University, Cheongju, Chungbuk, South Korea 361-763

Email:
hyjung@chungbuk.ac.kr

**Sunghan Bae**

Affiliation:
Department of Mathematics, KAIST, Daejon, South Korea 305-701

Email:
shbae@math.kaist.ac.kr

**Jaehyun Ahn**

Affiliation:
Department of Mathematics, Chungnam National University, Daejon, South Korea 305-764

Email:
jhahn@cnu.ac.kr

DOI:
https://doi.org/10.1090/S0025-5718-04-01671-0

Received by editor(s):
July 18, 2002

Received by editor(s) in revised form:
October 1, 2003

Published electronically:
May 24, 2004

Additional Notes:
This work was supported by grant No. R01-2002-000-00151-0 from the Basic Research Program of the Korea Science and Engineering Foundation

Article copyright:
© Copyright 2004
American Mathematical Society