FIVE CONSECUTIVE POSITIVE ODD NUMBERS,
NONE OF WHICH CAN BE EXPRESSED
AS A SUM OF TWO PRIME POWERS

YONG-GAO CHEN

Abstract. In this paper, we prove that there is an arithmetic progression of
positive odd numbers for each term M of which none of five consecutive odd
numbers $M, M - 2, M - 4, M - 6$ and $M - 8$ can be expressed in the form
$2^n \pm p^a$, where p is a prime and n, a are nonnegative integers.

Introduction

By calculation, we find that almost all positive odd numbers can be expressed
in the form $2^n + p$, where n is a positive integer and p is prime. For example,
$5 = 2 + 3, 7 = 2 + 5, 9 = 2 + 7, 11 = 2^2 + 7, 13 = 2 + 11, 15 = 2 + 13,
17 = 2^2 + 13$, etc. The first counterexample is 127. In 1934, Romanoff \[11\] proved
that the set of positive odd numbers which can be expressed in the form $2^n + p$
has positive asymptotic density in the set of all positive odd numbers, where n is
a nonnegative integer and p is prime. For a positive integer n and an integer a,
let $a \pmod{n} = \{a + nk : k \in \mathbb{Z}\}$. \{\{a_i \pmod{m_i}\}_{i=1}^k\} is called a covering system if
every integer b satisfies $b \equiv a_i \pmod{m_i}$ for at least one value of i. By employing a
covering system, P. Erdős \[8\] proved that there is an infinite arithmetic progression
of positive odd numbers each of which has no representation of the form $2^n + p$.
Cohn and Selfridge \[7\] proved that there exist infinitely many odd numbers which
are neither the sum nor the difference of two prime powers. In \[3\] Chen proved the
following result: the set of positive integers which have no representation of the form
$2^n \pm p^aq^b$, where p, q are distinct odd primes and n, a, b are nonnegative integers,
has positive lower asymptotic density in the set of all positive odd integers. That is,
the lower asymptotic density of the set of positive odd integers k such that $k - 2^n$
has at least three distinct prime factors for all positive integers n is positive. In \[5\]
Chen showed that the set of positive odd integers k such that $k - 2^n$ has at least
three distinct prime factors for all positive integers n contains an infinite arithmetic
progression. For further related information see Chen \[3, 4, 6\], Guy \[9\], A19, B21,
F13], Jaeschke \[10\], and Stanton and Williams \[12\]. The following question is a
natural one: Are there two consecutive positive odd numbers neither of which can
be expressed as a sum of two prime powers?
In this paper, we show that the answer to the question is affirmative. In fact, we go much further.

Theorem 1. Let \(k_1, \ldots, k_s \) be integers, let \(\{a_{ij} \mod m_{ij}\}_{j=1}^t \) be \(s \) covering systems with \(0 \leq a_{ij} < m_{ij} \), and let \(p_{ij} \) be primes with \(m_{ij} \) the order of \(2 \mod p_{ij} \) \((1 \leq j \leq t, 1 \leq i \leq s)\) such that if \(p_{ij} = p_{uv} \), then

\[
2^{a_{ij}} - k_i \equiv 2^{a_{uv}} - k_u \mod p_{ij}.
\]

Then there exists an arithmetic progression of positive odd numbers for each term \(M \) of which none of \(M + k_i \) \((1 \leq i \leq s)\) can be expressed in the form \(2^n \pm p^\alpha \), where \(p \) is a prime and \(n, \alpha \) are nonnegative integers.

Theorem 2. There exists an arithmetic progression of positive odd numbers for each term \(M \) of which none of five consecutive odd numbers \(M, M-2, M-4, M-6 \) and \(M-8 \) can be expressed in the form \(2^n \pm p^\alpha \), where \(p \) is a prime and \(n, \alpha \) are nonnegative integers.

Remark. By the proofs of Theorems 1 and 2, there is an integer \(M \leq 2^t * 2^{3000} \) such that none of five consecutive odd numbers \(M, M-2, M-4, M-6 \) and \(M-8 \) can be expressed in the form \(2^n \pm p^\alpha \). Currently, we cannot give an explicit value of \(M \).

2. Proofs

Lemma 1. Let \(p \) be an odd prime and let \(T \) be a positive integer. Then \(2^{p^T} - 1 \) has at least \(T \) distinct prime factors.

Proof. Let \(q_i \ (i = 1, 2, \ldots, T) \) be primes with

\[
q_i \mid \frac{2^{p^i} - 1}{2^{p^{i-1}} - 1}.
\]

Then \(q_1, q_2, \ldots, q_T \) are distinct primes. This completes the proof of Lemma 1. \(\square \)

Lemma 2. Let \(p \) be an odd prime and let \(m \) be the order of \(2 \mod p \). If

\[
2^m = 1 + p^l d, \quad p \nmid d,
\]

and \(p^n | 2^n - 1 \) for two integers \(n \geq 0 \) and \(u > 0 \), then \(n = mp^{u-l}v \) for some integer \(v \).

Proof. By using induction on \(r \), we can prove that

\[
2^{mp^r} = 1 + p^{l+r}d_r, \quad p \nmid d_r, \quad r = 0, 1, \ldots.
\]

By \(p | 2^n - 1 \) and \(m \) being the order of \(2 \mod p \), we have \(m | n \). Let \(n = mp^hv' \), \(p \nmid v' \). Then

\[
2^n = 2^{mp^hv'} = 1 + p^{l-h}d'_h, \quad p \nmid d'_h.
\]

Since \(p^u | 2^n - 1 \), we have \(u \leq l + h \). Hence \(h \geq u - l \). Let \(v = v'p^{h-u+l} \). This completes the proof of Lemma 2. \(\square \)

Lemma 3. Let \(p_1, \ldots, p_t \) be primes such that each prime repeats at most \(s \) times. Then there exist \(t \) distinct primes \(q_1, \ldots, q_t \) such that

\[
q_i | 2^{p_i^{s+t}} - 1, \quad q_i \neq p_j, \quad \text{for all } i, j.
\]
Proof. For each prime \(p \), by Lemma 1 we may take a set \(S(p) \) of primes with
\[|S(p)| = t + s \]

such that
\[q | 2^{p^{t+s}} - 1. \]

Since there are at most \(s \) indexes \(i \) with \(p_i = p \), we may appoint a prime \(q_i \in S(p) \setminus \{p_1, \ldots, p_t\} \) for each \(i \) with \(p_i = p \) such that if \(p_i = p_j = p \), then \(q_i \neq q_j \). If \(p_i \neq p_j \), then, by \(q_i \in S(p_i) \) and \(q_j \in S(p_j) \) we have
\[q_i | 2^{p^{t+s}} - 1, \quad q_j | 2^{p^{t+s}} - 1. \]

Hence \(q_i \neq q_j \). Thus, these \(q_i \) are distinct such that
\[q_i | 2^{p^{t+s}} - 1, \quad q_j \neq p_j, \quad \text{for all } i, j. \]

This completes the proof of Lemma 3. \(\square \)

Proof of Theorem 1. If \(p_{iu} = p_{iv} \), then, by \(m_{iu} \) and \(m_{iv} \) being the orders of \(2 \pmod{p_{iu}} \) and \(2 \pmod{p_{iv}} \), respectively, we have \(m_{iu} = m_{iv} \). By
\[2^{a_{iu}} - k_i \equiv 2^{a_{iv}} - k_i \pmod{p_{iu}} \]

and \(m_{iu} \) the order of \(2 \pmod{p_{iu}} \), we have
\[a_{iv} \equiv a_{iu} \pmod{m_{iu}}. \]

Hence \(a_{iu} \pmod{m_{iu}} = a_{iv} \pmod{m_{iv}} \). Thus, without loss of generality, we may assume that for each \(i \), primes \(p_{i1}, \ldots, p_{iu} \) are distinct. Let \(T = s + t_1 + \cdots + t_s \).

By Lemma 3, for each \(p_{ij} \), we may appoint a prime \(q_{ij} \) such that all primes \(q_{ij} \) \((1 < j < t_i, 1 < i < s)\) are distinct,
\[q_{ij} | 2^{p^{ij}} - 1, \quad 1 \leq j \leq t_i, 1 \leq i \leq s, \]
and \(q_{ij} \neq p_{uv} \) for all \(1 < j < t_i, 1 \leq i \leq s, 1 \leq v \leq t_u, 1 \leq u \leq s \). Let \(r_{ij} \) be integers such that \(0 \leq r_{ij} < p_{ij} \) and
\[r_{ij} \equiv 2^{a_{ij}} - k_i \pmod{p_{ij}}, \quad 1 \leq j \leq t_i, 1 \leq i \leq s. \]

Let
\[2^{m_{ij}} = 1 + p_{ij}^{l_{ij}} t_{ij}, \quad p \not| t_{ij}, \quad 1 \leq j \leq t_i, 1 \leq i \leq s, \]

and \(l = \max_{i,j} l_{ij} \). If there exists a nonnegative integer \(b \equiv a_{ij} \pmod{m_{ij}} \) with
\[p_{ij}^{l+T} | 2^{b} - k_i - r_{ij}, \]
then let \(b_{ij} \) be the least one of such \(b \). If there are no such \(b \), then let \(b_{ij} = a_{ij} \). Let \(m \) be a positive integer with
\[2^{m} \geq \max_{i,j} p_{ij}^{l+T} + \max_{i} |k_i| + 1. \]

Take an integer \(M \) with
\[M \equiv r_{ij} \pmod{p_{ij}^{l+T}}, \]
\[M \equiv 2^{b_{ij}} - k_i \pmod{q_{ij}}, \quad 1 \leq j \leq t_j, 1 \leq i \leq s, \]
\[M \equiv 1 + 2^{m} + 2^{m+1} \pmod{2^{m+2}}. \]
If \(p_{ij} = p_{uv} \), then \(r_{ij} = r_{uv} \) by the condition. Again, \(q_{ij} \) are distinct and each \(q_{ij} \) is different from any \(p_{uv} \). So such an \(M \) exists by the Chinese Remainder Theorem. Now we prove that none of \(M + k_i \) (1 \(\leq i \leq s \)) can be expressed in the form \(2^n \pm p^\alpha \), where \(p \) is a prime and \(n, \alpha \) are nonnegative integers. In order to prove this, it is enough to show that for each \(i \) and any nonnegative integer \(n \), \(M + k_i - 2^n \) has at least two distinct positive prime factors. Since \(\{ a_{ij} \pmod{m_{ij}} \}_{j=1}^{t_i} \) is a covering system, there exists a \(j \) with

\[n \equiv a_{ij} \pmod{m_{ij}}. \]

By (1), (3) and \(2^{m_{ij}} \equiv 1 \pmod{p_{ij}} \), we have

\[M + k_i - 2^n \equiv r_{ij} + k_i - 2^{a_{ij}} \equiv 0 \pmod{p_{ij}}. \]

Let

\[M + k_i - 2^n = p_{ij}^{\alpha_{ij}} K_{ij}, \quad p_{ij} \nmid K_{ij}, \quad \alpha_{ij} \geq 1. \]

If \(\alpha_{ij} < l + T \), then by

\[
|M + k_i - 2^n| = |1 + 2^m + 2^{m+1} + 2^{m+2}u + k_i - 2^n| \\
\geq |1 + 2^m + 2^{m+1} + 2^{m+2}u - 2^n| - |k_i| \\
\geq 2^m - 1 - |k_i| \geq p_{ij}^{l+T},
\]

we have \(|K_{ij}| > 1 \). In this case, \(M + k_i - 2^n \) has at least two distinct prime factors.

If \(\alpha_{ij} \geq l + T \), then \(n \equiv a_{ij} \pmod{m_{ij}} \) and

\[r_{ij} + k_i - 2^n \equiv M + k_i - 2^n \equiv 0 \pmod{p_{ij}^{l+T}}. \]

Hence \(n \equiv b_{ij} \pmod{m_{ij}} \) and by (2),

\[
2^{b_{ij}}(1 - 2^{n-b_{ij}}) \equiv 2^{b_{ij}} - k_i + k_i - 2^n \equiv r_{ij} + k_i - 2^n \equiv 0 \pmod{p_{ij}^{l+T}}.
\]

Thus

\[p_{ij}^{l+T} | 2^{n-b_{ij}} - 1. \]

By Lemma 2 we have \(n - b_{ij} = m_{ij} p_{ij}^T v_{ij} \) for some integer \(v_{ij} \). By

\[q_{ij} | 2^{p_{ij}^T} - 1, \]

we have

\[q_{ij} | 2^{n-b_{ij}} - 1. \]

That is,

\[q_{ij} | 2^n - 2^{b_{ij}}. \]

Hence

\[M + k_i - 2^n \equiv 2^{b_{ij}} - k_i + k_i - 2^n \equiv 2^{b_{ij}} - 2^n \equiv 0 \pmod{q_{ij}}. \]

Thus \(q_{ij} | K_{ij} \) and then \(M + k_i - 2^n \) has at least two distinct prime factors. This completes the proof of Theorem 1. \(\square \)
Proof of Theorem 2. Let \(k_1 = 0, k_2 = -2, k_3 = -4, k_4 = -6 \) and \(k_5 = -8 \). Take

\[
\{ a_{ij} \pmod{m_{1j}} \}_{j=1}^{8} = \{ 0 \pmod{2}, 3 \pmod{4}, 5 \pmod{8}, \\
9 \pmod{16}, 17 \pmod{32}, 33 \pmod{64}, \\
1 \pmod{128}, 65 \pmod{128} \},
\]
\[
\{ a_{2j} \pmod{m_{2j}} \}_{j=1}^{7} = \{ 1 \pmod{2}, 0 \pmod{4}, 6 \pmod{8}, \\
10 \pmod{16}, 18 \pmod{32}, 34 \pmod{64}, \\
2 \pmod{64} \},
\]
\[
\{ a_{3j} \pmod{m_{3j}} \}_{j=1}^{26} = \{ 0 \pmod{3}, 2 \pmod{4}, 3 \pmod{5}, \\
1 \pmod{10}, 4 \pmod{12}, 2 \pmod{15}, \\
1 \pmod{18}, 7 \pmod{20}, 8 \pmod{24}, \\
19 \pmod{25}, 24 \pmod{25}, 11 \pmod{36}, \\
23 \pmod{36}, 25 \pmod{40}, 25 \pmod{45}, \\
40 \pmod{45}, 20 \pmod{48}, 44 \pmod{48}, \\
9 \pmod{50}, 39 \pmod{50}, 37 \pmod{60}, \\
35 \pmod{72}, 4 \pmod{75}, 5 \pmod{120}, \\
29 \pmod{150}, 215 \pmod{360} \},
\]
\[
\{ a_{4j} \pmod{m_{4j}} \}_{j=1}^{9} = \{ 0 \pmod{2}, 1 \pmod{4}, 7 \pmod{8}, \\
11 \pmod{16}, 19 \pmod{32}, 35 \pmod{64}, \\
67 \pmod{128}, 3 \pmod{256}, 131 \pmod{256} \}
\]
\[
\{ a_{5j} \pmod{m_{5j}} \}_{j=1}^{13} = \{ 1 \pmod{2}, 2 \pmod{3}, 2 \pmod{5}, \\
4 \pmod{9}, 6 \pmod{10}, 6 \pmod{12}, \\
10 \pmod{18}, 0 \pmod{20}, 24 \pmod{30}, \\
34 \pmod{36}, 48 \pmod{60}, 34 \pmod{90}, \\
88 \pmod{180} \}.
\]

Noting that \(\{ a_j \pmod{m_j} \}_{j=1}^{k} \) is a covering system if and only if for every integer \(n \) with \(0 \leq n < \text{l.c.m.} \{ m_1, \ldots, m_k \} \) there exists a \(j \) with \(n = a_j \pmod{m_j} \), we can verify that \(\{ a_{1j} \pmod{m_{1j}} \}_{j=1}^{8}, \{ a_{2j} \pmod{m_{2j}} \}_{j=1}^{7}, \{ a_{3j} \pmod{m_{3j}} \}_{j=1}^{26}, \{ a_{4j} \pmod{m_{4j}} \}_{j=1}^{9}, \{ a_{5j} \pmod{m_{5j}} \}_{j=1}^{13} \) are all covering systems. Now, for every \(a_{ij} \pmod{m_{ij}} \) we appoint a prime \(p_{ij} \) such that \(m_{ij} \) is the order of \(2 \pmod{p_{ij}} \) and if \(p_{ij} = p_{uv} \), then

\[
2^{a_{ij}} - k_i \equiv 2^{a_{uv}} - k_u \pmod{p_{ij}}.
\]

Case 1. Let \(p_{11} = p_{21} = p_{41} = p_{51} = 3 \). Then

\[
2^0 - 0 \equiv 2^1 - (2) \equiv 2^0 - (-6) \equiv 2^1 - (-8) \pmod{3}.
\]

Case 2. Let \(p_{12} = p_{22} = p_{32} = p_{42} = 5 \). Then

\[
2^3 - 0 \equiv 2^0 - (-2) \equiv 2^2 - (-4) \equiv 2^1 - (-6) \pmod{5}.
\]
Case 3. Let
\[p_{13} = p_{23} = p_{43} = 17, \quad p_{14} = p_{24} = p_{44} = 257, \]
\[p_{15} = p_{25} = p_{45} = 65537, \quad p_{16} = p_{26} = p_{46} = 641, \quad p_{27} = 6700417. \]

Note that both Fermat numbers \(F_6 \) and \(F_7 \) are composite, let \(p_{18} = p_{47}, p_{17} \) be two distinct prime divisors of \(2^{64} + 1 \), and let \(p_{48}, p_{49} \) be two distinct prime divisors of \(2^{128} + 1 \). Then (4) follows from the following fact:
\[2^{2k+1} - 0 \equiv 2^{2k+2} - (-2) \equiv 2^{2k+3} - (-6) \pmod{2^{2k} + 1}. \]

Case 4. Let
\[p_{31} = p_{52} = 7, \quad p_{33} = p_{53} = 31, \]
\[p_{34} = p_{55} = 11, \quad p_{35} = p_{56} = 13, \]
\[p_{37} = p_{57} = 19, \quad p_{38} = p_{58} = 41, \]
\[p_{3(12)} = p_{5(10)} = 109, \quad p_{3(13)} = 37. \]

Then
\[2^0 - (-4) \equiv 2^2 - (-8) \pmod{7}, \quad 2^3 - (-4) \equiv 2^2 - (-8) \pmod{31}, \]
\[2^1 - (-4) \equiv 2^6 - (-8) \pmod{11}, \quad 2^4 - (-4) \equiv 2^6 - (-8) \pmod{13}, \]
\[2^1 - (-4) \equiv 2^{10} - (-8) \pmod{19}, \quad 2^7 - (-4) \equiv 2^9 - (-8) \pmod{41}, \]
\[2^{11} - (-4) \equiv 2^{34} - (-8) \pmod{109}. \]

Case 5. Each of 25, 45, 48, 50, 60 is the order of 2 modulus two distinct primes. These primes are 601, 1801; 631, 2331; 97, 673; 251, 4051; 61, 1321, respectively. If \(m > 1 \) and \(m \neq 6 \), then there exists at least one prime \(p \) with \(m \) the order of \(2 \pmod{p} \) (see [4, 5, 13]). Thus we may appoint a prime \(p_{ij} \) for each of the remaining \(a_{ij} \pmod{m_{ij}} \). Now, Theorem 2 follows from Theorem 1.

\[\Box \]

Acknowledgment

I am grateful to the referee for his/her suggestion.

References

[3] Y. G. Chen, On integers of the form \(2n \pm p_{1}^{a_1} \cdots p_{r}^{a_r} \), Proc. Amer. Math. Soc. 128(2000), 1613-1616. MR [2000i:11006]

Department of Mathematics, Nanjing Normal University, Nanjing 210097, Peoples Republic of China

E-mail address: ygchen@pine.njnu.edu.cn