Subdivision schemes with nonnegative masks

Author:
Xinlong Zhou

Journal:
Math. Comp. **74** (2005), 819-839

MSC (2000):
Primary 65D17, 26A15, 26A18, 39A10, 39B12

DOI:
https://doi.org/10.1090/S0025-5718-04-01712-0

Published electronically:
October 27, 2004

MathSciNet review:
2114650

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The conjecture concerning the characterization of a convergent univariate subdivision algorithm with nonnegative finite mask is confirmed.

**1.**M. Bröker and X. Zhou, Characterization of continous, four-coefficient scaling functions via matrix spectral radius,*SIAM J. Matrix Anal. Appl.*,**22**(2000), 242-257. MR**2001h:65169****2.**A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary Subdivision,*Mem. Amer. Math. Soc.*,**453**(1991). MR**92h:65017****3.**G. M. Chaikin, An algorithm for high speed curve generation,*Comp. Graphics and Image. Proc.*,**3**(1974), 346-349.**4.**D. Colella and C. Heil, Characterizations of scaling functions: continuous solutions,*SIAM J. Matrix Anal. Appl.*,**15**(1994), 496-518. MR**95f:26004****5.**I. Daubechies and J. C. Lagarias, Two-scale difference equations I. Existence and global regularity of solutions,*SIAM J. Math. Anal.*,**22**(1991), 1388-1410. MR**92d:39001****6.**D. E. Gonsor, Subdivision algorithms with nonnegative masks generally converge,*Adv. Comp. Math.*,**1**(1993), 215-221. MR**94e:65023****7.**R. -Q. Jia, Subdivision schemes in spaces,*Advances in Comp. Math*,**3**(1995), 309-341. MR**96d:65028****8.**R. -Q. Jia and D. -X. Zhou, Convergence of subdivision schemes associated with nonnegative masks,*SIAM J. Matrix Anal. Appl.*,**21**(1999), 418-430.MR**2001a:42041****9.**A. A. Melkman, Subdivision schemes with non-negative masks always converge--unless they obviously cannot?,*Ann. Numer. Math.*,**4**(1997), 451-460. MR**97i:41014****10.**C. A. Micchelli and H. Prautzsch, Uniform refinement of curves,*Linear Algebra Appl.*,**114/115**(1989), 841-870. MR**90k:65088****11.**G. C. Rota and G. Strang, A note on the joint spectral radius,*Indag. Math.*,**22**(1960), 379-381. MR**26:5434****12.**G. de Rham, Sur une courbe plane,*J. Mathem. pures et appl.*,**39**(1956), 25-42. MR**19:842e****13.**J. N. Tsitsiklis and V. D. Blondel, The Lyapunov exponent and joint spectral radius of pairs of matrices are hard, when not impossible, to compute and to approximate,*Mathematics of Control, Signals and Systems*,**10**(1997), 31-41. MR**99h:65238a****14.**Y. Wang, Two-scale dilation equations and the cascade algorithm,*Random and Computational Dynamics*,**3**(1995), 289-309. MR**96m:42060****15.**Y. Wang, Subdivision schemes and refinement equations with nonnegative masks,*J. Approx. Th.*,**113**(2001), 207-220. MR**2002i:42054****16.**D.-Z. Zhou, The p-norm joint spectral radius for even integers,*Methods and Applications of Analysis*,**5**(1) (1998), 39-54. MR**99e:42054**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65D17,
26A15,
26A18,
39A10,
39B12

Retrieve articles in all journals with MSC (2000): 65D17, 26A15, 26A18, 39A10, 39B12

Additional Information

**Xinlong Zhou**

Affiliation:
Department of Mathematics, China Jiliang University, Hangzhou, China; Institute of Mathematics, University of Duisburg-Essen, D-47057 Duisburg, Germany

Email:
zhou@math.uni-duisburg.de

DOI:
https://doi.org/10.1090/S0025-5718-04-01712-0

Keywords:
Cascade algorithm,
joint spectral radius,
nonnegative mask,
subdivision scheme

Received by editor(s):
December 13, 2002

Received by editor(s) in revised form:
January 15, 2004

Published electronically:
October 27, 2004

Article copyright:
© Copyright 2004
American Mathematical Society