Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The convergence of harmonic Ritz values, harmonic Ritz vectors, and refined harmonic Ritz vectors


Author: Zhongxiao Jia
Journal: Math. Comp. 74 (2005), 1441-1456
MSC (2000): Primary 15A18, 65F15, 65F30
DOI: https://doi.org/10.1090/S0025-5718-04-01684-9
Published electronically: June 1, 2004
MathSciNet review: 2137011
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns a harmonic projection method for computing an approximation to an eigenpair $(\lambda, x)$ of a large matrix $A$. Given a target point $\tau$ and a subspace $\mathcal{W}$ that contains an approximation to $x$, the harmonic projection method returns an approximation $(\mu+\tau, \tilde x)$ to $(\lambda,x)$. Three convergence results are established as the deviation $\epsilon$ of $x$ from $\mathcal{W}$ approaches zero. First, the harmonic Ritz value $\mu+\tau$ converges to $\lambda$ if a certain Rayleigh quotient matrix is uniformly nonsingular. Second, the harmonic Ritz vector $\tilde x$ converges to $x$ if the Rayleigh quotient matrix is uniformly nonsingular and $\mu+\tau$ remains well separated from the other harmonic Ritz values. Third, better error bounds for the convergence of $\mu+\tau$ are derived when $\tilde x$ converges. However, we show that the harmonic projection method can fail to find the desired eigenvalue $\lambda$--in other words, the method can miss $\lambda$ if it is very close to $\tau$. To this end, we propose to compute the Rayleigh quotient $\rho$ of $A$ with respect to $\tilde x$ and take it as a new approximate eigenvalue. $\rho$ is shown to converge to $\lambda$ once $\tilde x$ tends to $x$, no matter how $\tau$ is close to $\lambda$. Finally, we show that if the Rayleigh quotient matrix is uniformly nonsingular, then the refined harmonic Ritz vector, or more generally the refined eigenvector approximation introduced by the author, converges. We construct examples to illustrate our theory.


References [Enhancements On Off] (What's this?)

  • 1. R. W. Freund. Quasi-kernel polynomials and their use in non-Hermitian matrix iterations, J. Comput. Appl. Math., 43 (1992): 135-158. MR 94a:65018
  • 2. G. H. Golub and C. F. van Loan. Matrix Computations, the 3rd ed., The Johns Hopkins University Press, Baltimore and London, 1996. MR 97g:65006
  • 3. Z. Jia. The convergence of generalized Lanczos methods for large unsymmetric eigenproblems, SIAM J. Matrix Anal. Appl., 16 (1995): 843-862. MR 96d:65062
  • 4. Z. Jia. Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems, Linear Algebra Appl., 259 (1997): 1-23. MR 98c:65060
  • 5. Z. Jia. A refined iterative algorithm based on the block Arnoldi process for large unsymmetric eigenproblems, Linear Algebra Appl., 270 (1998): 171-189. MR 98m:65055
  • 6. Z. Jia. Generalized block Lanczos methods for large unsymmetric eigenproblems, Numer. Math., 80 (1998): 239-266. MR 99f:65059
  • 7. Z. Jia. Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm, Linear Algebra Appl., 287 (1999): 191-214. MR 99j:65046
  • 8. Z. Jia. Composite orthogonal projection methods for large matrix eigenproblems, Science in China, Ser.A, 42 (1999): 577-585. MR 2000b:65056
  • 9. Z. Jia. A refined subspace iteration algorithm for large sparse eigenproblems, Appl. Numer. Math., 32 (2000): 35-52. MR 2000j:65045
  • 10. Z. Jia. The refined harmonic Arnoldi method and an implicitly restarted refined algorithm for computing interior eigenpairs of large matrices, Appl. Numer. Math., 42 (2002): 489-512. MR 2003g:65049
  • 11. Z. Jia. Some theoretical comparisons of refined Ritz vectors and Ritz vectors, Science in China, Ser.A, 47 (Supp.) (2004): 222-233.
  • 12. Z. Jia and G. W. Stewart. An analysis of the Rayleigh-Ritz method for approximating eigenspaces, Math. Comput., 70 (2001): 637-647. MR 2001g:65040
  • 13. Z. Jia and D. Niu. An implicitly restarted refined bidiagonalization Lanczos algorithm for computing a partial singular value decomposition, SIAM J. Matrix Anal. Appl., 25 (2003): 246-265.
  • 14. T. A. Manteuffel and J. Otto. On the roots of orthogonal polynomials and residual polynomials associated with a conjugate gradient method, Numer. Linear Algebra Appl., 1 (1994): 449-475. MR 95i:65051
  • 15. R. B. Morgan. Computing interior eigenvalues of large matrices, Linear Algebra Appl., 154/156 (1991): 289-309. MR 92e:65050
  • 16. R. B. Morgan and M. Zeng. Harmonic projection methods for large nonsymmetric eigenvalue problems, Numer. Linear Algebra Appl., 5 (1998): 35-55. MR 99g:65046
  • 17. C. C. Paige, B. N. Parlett and H. A. van der Vorst. Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995): 115-134. MR 96a:65054
  • 18. B. N. Parlett. The Symmetric Eigenvalue Problem, SIAM, Philadelphia, PA, 1998. MR 99c:65072
  • 19. Y. Saad. Numerical Methods for Large Eigenvalue Problems, Manchester University Press, 1992. MR 93h:65052
  • 20. G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996): 401-425. MR 96m:65042
  • 21. G. L. G. Sleijpen, H. A. van der Vorst and E. Meijerink. Efficient expansion of subspaces in the Jacobi-Davidson method for standard and generalized eigenproblems, Electr. Trans. Numer. Anal., 7 (1998): 75-89. MR 99i:65040
  • 22. G. W. Stewart. Matrix Algorithms: Vol. II Eigensystems, SIAM, Philadelphia, PA, 2001.
  • 23. G. W. Stewart and J.-G Sun. Matrix Perturbation Theory, Academic Press, New York, 1990. MR 92a:65017
  • 24. H. A. van der Vorst. Computational Methods for Large Eigenvalue Problems, In P.G. Ciarlet and J.L. Lions (eds), Handbook of Numerical Analysis, Volume VIII, North-Holand (Elsevier), Amsterdam, 2002, pp. 3-179. MR 2003e:65058

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 15A18, 65F15, 65F30

Retrieve articles in all journals with MSC (2000): 15A18, 65F15, 65F30


Additional Information

Zhongxiao Jia
Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, Peoples Republic of China
Email: zjia@math.tsinghua.edu.cn

DOI: https://doi.org/10.1090/S0025-5718-04-01684-9
Keywords: Harmonic projection, refined harmonic projection, harmonic Ritz value, harmonic Ritz vector, refined harmonic Ritz vector, refined eigenvector approximation, convergence
Received by editor(s): June 7, 2002
Received by editor(s) in revised form: December 23, 2003
Published electronically: June 1, 2004
Additional Notes: Work supported by Special Funds for the State Major Basic Research Projects (G1999032805)
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society