Instability analysis of saddle points by a local minimax method

Author:
Jianxin Zhou

Journal:
Math. Comp. **74** (2005), 1391-1411

MSC (2000):
Primary 58E05, 58E30; Secondary 35A40, 35A15

Published electronically:
July 20, 2004

MathSciNet review:
2137008

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The objective of this work is to develop some tools for local instability analysis of multiple critical points, which can be computationally carried out. The Morse index can be used to measure local instability of a nondegenerate saddle point. However, it is very expensive to compute numerically and is ineffective for degenerate critical points. A local (weak) linking index can also be defined to measure local instability of a (degenerate) saddle point. But it is still too difficult to compute. In this paper, a local instability index, called *a local minimax index*, is defined by using a local minimax method. This new instability index is known beforehand and can help in finding a saddle point numerically. Relations between the local minimax index and other local instability indices are established. Those relations also provide ways to numerically compute the Morse, local linking indices. In particular, the local minimax index can be used to define a local instability index of a saddle point relative to a reference (trivial) critical point even in a Banach space while others failed to do so.

**1.**Antonio Ambrosetti and Paul H. Rabinowitz,*Dual variational methods in critical point theory and applications*, J. Functional Analysis**14**(1973), 349–381. MR**0370183****2.**A. Bahri and P.-L. Lions,*Morse index of some min-max critical points. I. Application to multiplicity results*, Comm. Pure Appl. Math.**41**(1988), no. 8, 1027–1037. MR**968487**, 10.1002/cpa.3160410803**3.**A. Bahri and P.-L. Lions,*Solutions of superlinear elliptic equations and their Morse indices*, Comm. Pure Appl. Math.**45**(1992), no. 9, 1205–1215. MR**1177482**, 10.1002/cpa.3160450908**4.**Thomas Bartsch and Zhi-Qiang Wang,*On the existence of sign changing solutions for semilinear Dirichlet problems*, Topol. Methods Nonlinear Anal.**7**(1996), no. 1, 115–131. MR**1422008****5.**T. Bartsch, K.-C. Chang, and Z.-Q. Wang,*On the Morse indices of sign changing solutions of nonlinear elliptic problems*, Math. Z.**233**(2000), no. 4, 655–677. MR**1759266**, 10.1007/s002090050492**6.**Haïm Brezis and Louis Nirenberg,*Remarks on finding critical points*, Comm. Pure Appl. Math.**44**(1991), no. 8-9, 939–963. MR**1127041**, 10.1002/cpa.3160440808**7.**Kung-ching Chang,*Infinite-dimensional Morse theory and multiple solution problems*, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1196690****8.**Y. S. Choi and P. J. McKenna,*A mountain pass method for the numerical solution of semilinear elliptic problems*, Nonlinear Anal.**20**(1993), no. 4, 417–437. MR**1206432**, 10.1016/0362-546X(93)90147-K**9.**Y. Chen and P. J. McKenna,*Traveling waves in a nonlinearly suspended beam: theoretical results and numerical observations*, J. Differential Equations**136**(1997), no. 2, 325–355. MR**1448828**, 10.1006/jdeq.1996.3155**10.**Charles V. Coffman,*A nonlinear boundary value problem with many positive solutions*, J. Differential Equations**54**(1984), no. 3, 429–437. MR**760381**, 10.1016/0022-0396(84)90153-0**11.**E. N. Dancer,*The effect of domain shape on the number of positive solutions of certain nonlinear equations*, J. Differential Equations**74**(1988), no. 1, 120–156. MR**949628**, 10.1016/0022-0396(88)90021-6**12.**Wei Yue Ding and Wei-Ming Ni,*On the existence of positive entire solutions of a semilinear elliptic equation*, Arch. Rational Mech. Anal.**91**(1986), no. 4, 283–308. MR**807816**, 10.1007/BF00282336**13.**Zhonghai Ding, David Costa, and Goong Chen,*A high-linking algorithm for sign-changing solutions of semilinear elliptic equations*, Nonlinear Anal.**38**(1999), no. 2, Ser. A: Theory Methods, 151–172. MR**1697049**, 10.1016/S0362-546X(98)00086-8**14.**J.J. Garcia-Ripoll, V.M. Perez-Garcia, E.A. Ostrovskaya and Y. S. Kivshar,*Dipole-mode vector solitons*, Phy. Rev. Lett.,**85**(2000), 82-85.**15.**Juan José García-Ripoll and Víctor M. Pérez-García,*Optimizing Schrödinger functionals using Sobolev gradients: applications to quantum mechanics and nonlinear optics*, SIAM J. Sci. Comput.**23**(2001), no. 4, 1316–1334 (electronic). MR**1885603**, 10.1137/S1064827500377721**16.**I. Kuzin and S. I. Pohozaev,*Entire Solutions of Semilinear Elliptic Equations*, Birkhauser, Boston, 1997.**17.**A. C. Lazer and S. Solimini,*Nontrivial solutions of operator equations and Morse indices of critical points of min-max type*, Nonlinear Anal.**12**(1988), no. 8, 761–775. MR**954951**, 10.1016/0362-546X(88)90037-5**18.**J. Q. Liu and S. J. Li,*Some existence theorems on multiple critical points and their applications*, Kexue Tongbao,**17**(1984).**19.**Shu Jie Li and Michel Willem,*Applications of local linking to critical point theory*, J. Math. Anal. Appl.**189**(1995), no. 1, 6–32. MR**1312028**, 10.1006/jmaa.1995.1002**20.**Yongxin Li and Jianxin Zhou,*A minimax method for finding multiple critical points and its applications to semilinear PDEs*, SIAM J. Sci. Comput.**23**(2001), no. 3, 840–865. MR**1860967**, 10.1137/S1064827599365641**21.**Yongxin Li and Jianxin Zhou,*Convergence results of a local minimax method for finding multiple critical points*, SIAM J. Sci. Comput.**24**(2002), no. 3, 865–885. MR**1950515**, 10.1137/S1064827500379732**22.**Yongxin Li and Jianxin Zhou,*Local characterizations of saddle points and their Morse indices*, Control of nonlinear distributed parameter systems (College Station, TX, 1999) Lecture Notes in Pure and Appl. Math., vol. 218, Dekker, New York, 2001, pp. 233–251. MR**1817184****23.**Yan Yan Li,*Existence of many positive solutions of semilinear elliptic equations on annulus*, J. Differential Equations**83**(1990), no. 2, 348–367. MR**1033192**, 10.1016/0022-0396(90)90062-T**24.**Jean Mawhin and Michel Willem,*Critical point theory and Hamiltonian systems*, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR**982267****25.**Z.H. Musslimani, M. Segev, D.N. Christodoulides and M. Soljacic,*Composite Multihump vector solitons carrying topological charge*, Phy. Rev. Lett.,**84**(2000) 1164-1167.**26.**Zeev Nehari,*On a class of nonlinear second-order differential equations*, Trans. Amer. Math. Soc.**95**(1960), 101–123. MR**0111898**, 10.1090/S0002-9947-1960-0111898-8**27.**W.M. Ni,*Some Aspects of Semilinear Elliptic Equations*, Dept. of Math., National Tsing Hua Univ., Hsinchu, Taiwan, Rep. of China, 1987.**28.**W.M. Ni,*Recent progress in semilinear elliptic equations*, in RIMS Kokyuroku 679, Kyoto University, Kyoto, Japan, 1989, 1-39.**29.**Paul H. Rabinowitz,*Minimax methods in critical point theory with applications to differential equations*, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR**845785****30.**E. A. de B. e Silva,*Multiple critical points for asymptotically quadratic functionals*, Comm. Partial Differential Equations**21**(1996), no. 11-12, 1729–1770. MR**1421210**, 10.1080/03605309608821244**31.**Joel Smoller,*Shock waves and reaction-diffusion equations*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR**688146****32.**Sergio Solimini,*Morse index estimates in min-max theorems*, Manuscripta Math.**63**(1989), no. 4, 421–453. MR**991264**, 10.1007/BF01171757**33.**C. Troestler and M. Willem,*Nontrivial solution of a semilinear Schrödinger equation*, Comm. Partial Differential Equations**21**(1996), no. 9-10, 1431–1449. MR**1410836**, 10.1080/03605309608821233**34.**Zhi Qiang Wang,*On a superlinear elliptic equation*, Ann. Inst. H. Poincaré Anal. Non Linéaire**8**(1991), no. 1, 43–57 (English, with French summary). MR**1094651****35.**Michel Willem,*Minimax theorems*, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. MR**1400007****36.**J. Zhou,*A min-orthogonal method for finding multiple saddle points.*, J. Math. Anal. Appl.,**291**(2004), 66-81.

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
58E05,
58E30,
35A40,
35A15

Retrieve articles in all journals with MSC (2000): 58E05, 58E30, 35A40, 35A15

Additional Information

**Jianxin Zhou**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843

Email:
jzhou@math.tamu.edu

DOI:
https://doi.org/10.1090/S0025-5718-04-01694-1

Keywords:
Saddle point,
instability index,
Morse index,
(weak) local linking,
local minimax method

Received by editor(s):
May 4, 2003

Received by editor(s) in revised form:
December 11, 2003

Published electronically:
July 20, 2004

Article copyright:
© Copyright 2004
American Mathematical Society