IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Pointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem


Author: Hongsen Chen
Journal: Math. Comp. 74 (2005), 1097-1116
MSC (2000): Primary 65N30, 65N15, 65N12; Secondary 41A25, 35B45, 35J20
DOI: https://doi.org/10.1090/S0025-5718-04-01700-4
Published electronically: July 16, 2004
MathSciNet review: 2136995
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we derive some pointwise error estimates for the local discontinuous Galerkin (LDG) method for solving second-order elliptic problems in $R^N$ ($N\geq 2$). Our results show that the pointwise errors of both the vector and scalar approximations of the LDG method are of the same order as those obtained in the $L^2$ norm except for a logarithmic factor when the piecewise linear functions are used in the finite element spaces. Moreover, due to the weighted norms in the bounds, these pointwise error estimates indicate that when at least piecewise quadratic polynomials are used in the finite element spaces, the errors at any point $z$ depend very weakly on the true solution and its derivatives in the regions far away from $z$. These localized error estimates are similar to those obtained for the standard conforming finite element method.


References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure. Appl. Math., 12 (1959), 623-722. MR 23:A2610
  • 2. D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760. MR 83f:65173
  • 3. D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Martin, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779. MR 2002k:65183
  • 4. I. Babuska, The finite element method with penalty, Math. Comp., 27 (1973), 221-228. MR 50:3607
  • 5. G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), 45-59. MR 55:4737
  • 6. F. Bassi, S. ReBay, G. Mariotti, S. Pedinotti and M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, Second European Conference on Turbomachinery fluid dynamics and thermodynamics (Antwerpen, Belgium) (R. Decuypere and G. Dibelius, eds.), Technologisch Institut, March 1997, 99-108.
  • 7. C. E. Baumann and J. T. Oden, A discontinuous $hp$finite element method for convection-diffusion problems, Comput. Meth. Appl. Mech. Engrg., 175 (1999), 311-341. MR 2000d:65171
  • 8. F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo, Discontinuous Galerkin approximations for elliptic problems, Numer. Methods for Partial Differential Equations, 16 (2000), 365-378. MR 2001e:65178
  • 9. P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), 1676-1706. MR 2002k:65175
  • 10. H. Chen, Local error estimates of mixed discontinuous Galerkin methods for elliptic problems, J. Numer. Math., Vol. 12 (2004), 1-22.
  • 11. H. Chen, Z. Chen, Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems, SIAM J. Numer. Anal., 2004, to appear.
  • 12. Z. Chen, On the relationship of various discontinuous finite element methods for second order elliptic equations, East-West Numer. Math., 9 (2001), 99-122.
  • 13. B. Cockburn, S. Hou and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comp., 54 (1990), 545-581. MR 90k:65162
  • 14. B. Cockburn, G. E. Karniadakis and C. W. Shu, Discontinuous Galerkin Methods, Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, Berlin, 2000. MR 2002b:65004
  • 15. B. Cockburn and C. W. Shu, The local discontinuous finite element method for convection diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463. MR 99j:65163
  • 16. A. Demlow, Localized pointwise error estimates for mixed finite element methods, Math. Comp., 73 (2004) 1623-1653.
  • 17. J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Lecture Notes in Physics, Vol. 58, Springer-Verlag, Berlin, 1976, 207-216.MR 55:13823
  • 18. J. T. Freund, The discontinuous Galerkin method for a scalar elliptic equation, in Computational mechanics: New trends and applications, S. Idehlson, E. Onate and E. Dvorkin (eds), CIMNE, 1998. MR 2002b:00032
  • 19. J. A. Nitsche, Über ein variationsprinzip zur lösung Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unteworfen sind, abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. MR 49:6649
  • 20. J. A. Nitche and A. H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp., 28 (1974), 937-958. MR 51:9525
  • 21. B. Riviére, M. F. Wheeler, and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems, I, Comput. Geosci., 3 (1999), 337-360. MR 2001d:65145
  • 22. A. H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates, Math. Comp., 67 (1998), 877-899.MR 98j:65082
  • 23. A. H. Schatz and L. B. Wahlbin, Interior maximum norm estimates for finite element methods, Math. Comp., 31 (1977), 414-442. MR 55:4748
  • 24. A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. Part 1, Math. Comp., 32 (1978), 73-109.MR 58:19233a
  • 25. M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15 (1978), 152-161. MR 57:11117

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N15, 65N12, 41A25, 35B45, 35J20

Retrieve articles in all journals with MSC (2000): 65N30, 65N15, 65N12, 41A25, 35B45, 35J20


Additional Information

Hongsen Chen
Affiliation: Department of Mathematics, University of Wyoming, Laramie, Wyoming 82070
Email: hchen@uwyo.edu

DOI: https://doi.org/10.1090/S0025-5718-04-01700-4
Keywords: Local discontinuous Galerkin method, pointwise error estimate, maximum norm, elliptic problem
Received by editor(s): December 7, 2003
Received by editor(s) in revised form: February 21, 2004
Published electronically: July 16, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society