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EFFICIENT INVERSION OF THE GALERKIN MATRIX
OF GENERAL SECOND-ORDER ELLIPTIC OPERATORS

WITH NONSMOOTH COEFFICIENTS

MARIO BEBENDORF

Abstract. This article deals with the efficient (approximate) inversion of fi-
nite element stiffness matrices of general second-order elliptic operators with
L∞-coefficients. It will be shown that the inverse stiffness matrix can be ap-
proximated by hierarchical matrices (H-matrices). Furthermore, numerical
results will demonstrate that it is possible to compute an approximate inverse
with almost linear complexity.

1. Introduction

We are concerned with the numerical solution of large finite element systems of
Dirichlet problems,

Lu = f in Ω,

u = g on ∂Ω,

with second-order elliptic operators

(1) Lu = −div [A∇u + bu] + c · ∇u + du

on bounded Lipschitz domains Ω ⊂ R
n. The Galerkin matrix of such operators is

sparse but has a bandwidth of order N1−1/n, where N is the number of degrees
of freedom. Therefore, direct methods are well suited for small problem sizes, but
are not competitive if N is large. In the latter case, iterative methods are usually
more efficient. On the other hand, if the coefficient matrix is ill conditioned, these
methods suffer from slow convergence.

The aim of this article is to show that hierarchical matrices (H-matrices) intro-
duced by Hackbusch et al. [15, 16] can fill this gap. As we will see, they provide a
means by which an approximation of the inverse stiffness matrix can be generated
and handled with logarithmic-linear complexity. Furthermore, no grid hierarchy
is required and H-matrices are robust in the sense that their efficiency does not
depend on the smoothness and only slightly on the size of the coefficients. The H-
approximant might be used directly to solve the finite element system or it might
be used as a black-box preconditioner in an iterative scheme. If it is used as a
preconditioner, there is no need to approximate the inverse with high accuracy,
and the complexity can therefore even be reduced. Another application of the
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inverse is Schur complements, which play a central role, for example, in domain
decomposition methods.

The structure of H-matrices was originally designed to efficiently represent inte-
gral operators with asymptotically smooth kernel. For this application the existence
of H-matrix approximants is well understood. Even efficient algorithms for the gen-
eration of the approximants exist; see [1, 3]. Close to the application of integral
operators are inverses of elliptic operators since they have an integral representation
with the Green function as kernel function:

(2) (L−1ϕ)(x) =
∫

Ω

G(x, y)ϕ(y) dy for all ϕ ∈ C∞0 (Ω).

If L has smooth coefficients, the Green function is smooth (except for x = y) and
the mentioned existence theorems apply. However, the algorithms for building the
approximants cannot be used, since they are either based on the matrix entries or
on the kernel function, neither of which is accessible in general.

In this article the case of L∞-coefficients is treated. In this case it is not obvi-
ous that an H-matrix approximant exists, since according to the De Georgi-Nash
theorem (see [10]), G is only locally Hölder continuous. Therefore, proofs cannot
rely on the smoothness of the kernel function as they did for integral operators.
In [4] we were able to show that the inverse stiffness matrix of the principal parts,
i.e., b = c = 0 and d = 0, can be approximated by H-matrices. In the present
article this result will be extended to operators (1) with lower-order terms without
restrictions on their size. Furthermore, we will present numerical results that, by an
H-matrix inversion based on the Frobenius formulas, one is able to (approximately)
invert the stiffness matrix with logarithmic-linear complexity.

The structure of the rest of this article is as follows. In Section 2 a brief review
of the structure of H-matrices will be given. All necessary results and notation
for the theorems of this article from the field of H-matrices will be presented.
Section 3 contains the existence theory of degenerate kernel approximants of the
Green function, i.e.,

G(x, y) ≈
k∑

i=1

ui(x)vi(y), x ∈ D1 and y ∈ D2,

on an appropriate pair of domains (D1, D2). The usual way to prove existence of a
degenerate kernel approximant is to exploit the smoothness of the kernel function.
In the case of L∞-coefficients the Green function of the inverse differential oper-
ator is not smooth. Therefore, another technique, which is based on the interior
regularity of elliptic problems, has to be used. We will show that as long as L is
invertible, the Green function can be approximated by a degenerate kernel even in
the case of dominating lower-order terms. From the numerical results it will be
seen that these terms enter the constants only in a moderate way.

This result is then employed using (2) to show that the discrete inverse of L can
be approximated by H-matrices, which in turn leads to the existence of H-matrix
approximants to the inverse stiffness matrix. In Section 4 we describe in detail how
to implement an efficient H-matrix inversion. The H-inversion presented is based
on the Frobenius formulas and is used to produce numerical results for operators
with nonsmooth coefficients. We will see that this algorithm is able to compute an
approximate inverse with almost linear complexity.
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2. Hierarchical matrices

This section gives a brief overview over the structure of H-matrices originally
introduced by Hackbusch et al. [15, 16]. We will describe the two principles on
which the efficiency of H-matrices is based. These are the hierarchical partitioning
of the matrix into blocks and the blockwise restriction to low-rank matrices. These
principles were also used in the mosaic-skeleton method [19].

In contrast to other efficient methods like wavelet techniques [6, 7, 8], fast mul-
tipole and panel clustering (see [13], [17] and the references therein), H-matrices
concentrate on the matrix level. They are purely algebraic in the sense that once
the H-matrix approximant is built, no further information about the underlying
problem is needed.

Let us assume that M ∈ R
N×N has indices

(3) mij = a(ϕj , ϕi),

where ϕi are basis functions with support Xi := supp ϕi, i ∈ I := {1, . . . , N}, and
a is a bilinear form. In this section we assume that there is a partition P of the
indices I × I of M such that each block b = s× t, s, t ⊂ I, can be approximated by
a matrix of low rank, i.e.,

Mb ≈ UV T , U ∈ R
s×k, V ∈ R

t×k,

where k is small compared with |s| and |t|. Obviously, by Mb we denote the subblock
in the intersection of the rows s and columns t of M . From Example 2.4 it will
be seen that the stiffness matrix of operators of type (1) possesses this property.
Section 3 will extend this to the inverse stiffness matrix.

2.1. The cluster tree. In order to exploit the fact that there is a partition such
that each block can be approximated by a matrix of low rank, we first have to find
it from the set of possible subsets of I × I. This set, however, is too large to be
searched for a partition that will satisfy our needs. Therefore, the set of subsets
b = s× t is restricted to those which consist of index sets s and t stemming from a
cluster tree TI . A tree TI satisfying the following conditions is called a cluster tree:

(1) I is the root of TI ,
(2) if t ∈ TI is not a leaf, then t has sons t1, t2 ∈ TI , so that t = t1 ∪ t2.

The set of sons of t is denoted by S(t), while L(TI) stands for the set of leaves of
the tree TI . The support of a cluster t is the union of the supports of the basis
functions corresponding to the indices in t:

Xt :=
⋃
i∈t

Xi.

A cluster tree is usually generated by recursive subdivision of I so as to minimize
the diameter of each part. For practical purposes the recursion should be stopped
if a certain cardinality nmin of the clusters is reached, rather than subdividing the
clusters until only one index is left. The depth of TI will be denoted by p. For
reasonable cluster trees one would always expect p = O(log N). A strategy based
on the principle component analysis is used in [2]. The complexity of building the
cluster tree in the case of quasi-uniform grids can be estimated as O(N log N).

Remark 2.1. Sometimes, the number of sons of a cluster in the previous definition
of a cluster tree is not restricted to two. However, this generalization has not proved
useful in practice.
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2.2. Admissibility condition. In order to be able to approximate each block b
of M by a low-rank matrix, b has to satisfy a certain condition. This so-called
admissibility condition will be the criterion for choosing whether b belongs to P . In
the field of elliptic partial differential equations the following condition on b = s× t
has proved useful:

(4) min{diamXs, diam Xt} ≤ η dist(Xs, Xt),

where η > 0 is a given real number. We will see that under quite general as-
sumptions this condition allows us to approximate the Green function of L by a
degenerate kernel, i.e., there are functions ui, vi, i = 1, . . . , k, so that

(5) G(x, y) ≈
k∑

i=1

ui(x)vi(y) in Xs × Xt,

where k depends only logarithmically on N . Since by (3) the entries of b depend
only on the values of a on the domain Xs × Xt, the degenerate approximation of
G on Xs × Xt will finally lead to a low-rank approximation of the block b.

Condition (4) was also used to prove convergence of the adaptive cross approxi-
mation (ACA) algorithm for the efficient generation of H-matrix approximants in
the case of integral equations (cf. [1, 3]).

Remark 2.2. In the case of unstructured grids the computation of the distance in
(4) between two supports Xs and Xt is too costly. Therefore, for practical purposes,
the supports are enclosed into sets of a simpler structure; e.g., boxes or spheres.

2.3. Block cluster tree. Based on a cluster tree TI which contains a hierarchy
of partitions of I, we are able to construct the so called block cluster tree TI×I

describing a hierarchy of partitions of I × I by the following rule.
procedure build block cluster tree(s × t)
begin
if (s, t) does not satisfy (4) and s, t �∈ L(TI) then begin

S(s × t) := {s′ × t′ : s′ ∈ S(s), t′ ∈ S(t)}
for s′ × t′ ∈ S(s × t) do build block cluster tree(s′ × t′)

end
else S(s × t) := ∅

end

Applying build block cluster tree to I×I, we obtain a cluster tree for the index set
I×I. The set of leaves P := L(TI×I) is a partition of I×I with blocks b = s×t ∈ P
either satisfying (4) or consisting of clusters t and s, one of which is a leaf in TI .
The complexity of building the block cluster tree in the case of quasi-uniform grids
can be estimated as O(η−nN log N) (cf. [2]).

We are now in a position to define the set of H-matrices for a partition P with
blockwise rank k:

H(P, k) := {M ∈ R
I×I : rankMb ≤ k for all b ∈ P}.

Note that H(P, k) is not a linear space, since in general the sum of two rank k
matrices exceeds rank k.

Remark 2.3. For a block B ∈ R
s×t the low-rank representation B = UV T , U ∈

R
s×k, V ∈ R

t×k, is only advantageous compared with the entrywise representation
if k(|s| + |t|) ≤ |s| |t|. For the sake of simplicity in this article, however, we will
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assume that each block has the low-rank representation. Employing the entrywise
representation for appropriate blocks will accelerate the algorithms.

Example 2.4. The stiffness matrix S of the differential operator L from (1) is
in H(P, nmin). If b ∈ P satisfies (4), then the supports of the basis functions are
pairwise disjoint. Hence, the matrix entries in this block vanish. In the remaining
case b does not satisfy (4). Then the size of one of the clusters is less than or equal
to nmin. In both cases the rank of Sb does not exceed nmin.

2.4. Storage and matrix-vector multiplication. The cost of multiplying an
H-matrix M ∈ H(P, k) and its transposed MT by a vector x ∈ R

N is inherited
from the blockwise matrix-vector multiplication

Mx =
∑

s×t∈P

Ms×txt and MT x =
∑

s×t∈P

(Ms×t)T xs.

Since each block s × t has the representation Ms×t = UV T , U ∈ R
s×k, V ∈ R

t×k

(see Remark 2.3), O(k(|s|+ |t|)) units of memory are needed to store Ms×t and the
matrix-vector products

Ms×txt = UV T xt and (Ms×t)T xs = V UT xs

can be done in O(k(|s| + |t|)) operations. Exploiting the hierarchical structure of
M , it can therefore be shown that both storing M and multiplying M and MT

by a vector has O(η−nkN log N) complexity. For a rigorous analysis the reader is
referred to [2]. Therefore, H-matrices are well suited for iterative schemes such as
Krylov subspace methods.

3. Approximation of FE inverses

In Example 2.4 it was mentioned that the stiffness matrix of a general elliptic
operator with L∞-coefficients can be represented as an H-matrix. In this section it
will be proved, moreover, that its inverse can be approximated by an H-matrix. For
this purpose it will first be shown that the Green function of L and the bounded
Lipschitz domain Ω ⊂ R

n can be approximated on a pair D1 × D2 of domains
satisfying

diam D2 ≤ η dist(D1, D2).

Since we consider Dirichlet problems, we assume that L : H1
0 (Ω) → H−1(Ω) is

an invertible second-order partial differential operator

(6) Lu = −div [A∇u + bu] + c · ∇u + du,

where A(x) ∈ R
n×n is symmetric with entries aij ∈ L∞(Ω) and

(7) 0 < λ ≤ λ(x) ≤ Λ

for all eigenvalues λ(x) of A(x) and almost all x ∈ Ω. The bound Λ/λ on the
condition numbers of A will be denoted by κ := Λ/λ. Furthermore, let b(x), c(x) ∈
R

n and d(x) ∈ R with bi, ci, d ∈ L∞(Ω), i = 1, . . . , n.
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3.1. Degenerate approximation of the Green function. In [4] we investigated
the principal part L0 of such operators; i.e., operators with b = c = 0 and d = 0.
For these operators it is shown in [12] that in the case n ≥ 3 a Green function
G0 : Ω × Ω → R exists with the properties

G0(x, ·) ∈ H1(Ω \ Br(x)) ∩ W 1,1
0 (Ω) for all x ∈ Ω and all r > 0,(8a)

a(G0(x, ·), ϕ) = ϕ(x) for all ϕ ∈ C∞0 (Ω) and x ∈ Ω,(8b)

where Br(x) is the open ball centered at x with radius r and

(9) a(u, v) =
∫

Ω

∇v · A∇u dx.

Furthermore, for x, y ∈ Ω it holds that

(10) |G0(x, y)| ≤ cn(κ)
λ

|x − y|2−n.

In the case of invertible operators L of type (6) a Green function G :=(L−1
0 L)−1G0

satisfying (8) can be defined, where

(11) a(u, v) =
∫

Ω

∇v · A∇u dx +
∫

Ω

∇v · bu dx +
∫

Ω

c · ∇u v dx +
∫

Ω

duv dx.

Notice that
G − G0 = [(L−1

0 L)−1 − I]G0 = −L−1L1G0,

where L1 := L − L0 is the lower-order part of L. Since L−1L1 is an operator of
order −1, L−1L1G0 is smoother than G0. Hence, the singularity of G0 at x = y
is carried over to G and we may assume that there is a constant cn such that for
x, y ∈ Ω it holds that

(12) |G(x, y)| ≤ cn(κ, b, c, d)
λ

|x − y|2−n.

In the case n = 2, the existence of a Green function for operators of type (6) has
been proved more rigorously in [9]. In this case instead of (10) for x, y ∈ Ω, one
has the following bound on the Green function:

(13) |G(x, y)| ≤ c(κ, b, c, d)
λ

log |x − y|.

We will make use of the following characteristic relation between L−1 and G,
which is equivalent to (8b):

(14) (L−1ϕ)(x) =
∫

Ω

G(x, y)ϕ(y) dy for all ϕ ∈ C∞0 (Ω).

In the rest of this paper D ⊂ R
n is a domain. The proof of the following basic

lemma is mainly based on the Poincaré inequality (cf. [5]), and can be found in [4].

Lemma 3.1. Let D be convex and X a closed subspace of L2(D). Then for any
k ∈ N there is a subspace Vk ⊂ X satisfying dim Vk ≤ k so that

(15) distL2(D)(u, Vk) ≤ cA
diam D

n
√

k
‖∇u‖L2(D)

for each u ∈ X ∩ H1(D), where cA depends only on the spatial dimension n.
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The following set will be used in Lemma 3.1 as X :

(16) X(D) = {u ∈ H1
loc(D) : a(u, ϕ) = 0 ∀ϕ ∈ C∞0 (D ∩ Ω) and u|D\Ω = 0},

where a(·, ·) is the bilinear form defined in (11). Hence, the set X(D) consists of
L-harmonic H1

loc-functions vanishing outside of Ω. A proof for the fact that X(D)
is a closed subspace of L2(D) can be found in [4, Lemma 2.2]. We remark that the
extension of G(x, ·), x ∈ Ω, to R

n by zero is in X(D) for all D ⊂ R
n satisfying

dist(x, D) > 0.
By the following Caccioppoli inequality we are able to estimate the gradient

on a compact subset by the norm of the function on an enclosing domain. This
inequality provides a means to overcome the lack of regularity of G.

Lemma 3.2. Let K ⊂ D be a compact subset. There is cR = cR(κ, λ, b, c, d) such
that

(17) ‖∇u‖L2(K) ≤ cR

dist(K, ∂D)
‖u‖L2(D)

for all u ∈ X(D).

Proof. Let η ∈ C1(D) satisfy 0 ≤ η ≤ 1, η = 1 in K, η = 0 in a neighborhood
of ∂D and |∇η| ≤ 2/δ in D, where we set δ = dist(K, ∂D). Since K ′ := supp η
is a compact subset of D, definition (16) of X(D) implies u ∈ H1(K ′). Hence,
ϕ := η2u ∈ H1

0 (D ∩ Ω) may be used as a test function in a(u, ϕ) = 0 due to the
dense embedding of C∞0 (D ∩ Ω) in H1

0 (D ∩ Ω). Since ϕ = 0 in D \ Ω, we have

−
∫

D

(∇η2u) · bu dx −
∫

D

η2u c · ∇u dx −
∫

D

dη2|u|2 dx =
∫

D

(∇η2u) · A∇u dx

= 2
∫

D

ηu(∇η) · A∇u dx +
∫

D

η2(∇u) · A∇u dx.

Hence,∫
D

η2|A1/2∇u|2 dx = −2
∫

D

ηu(∇η) · A∇u dx − 2
∫

D

η(∇η) · b |u|2 dx

−
∫

D

η2(∇u) · bu dx −
∫

D

η2u c · ∇u dx −
∫

D

dη2|u|2 dx.

For the first integral on the right-hand side of the last equation we obtain∣∣∣∣
∫

D

ηu(∇η) · A∇u dx

∣∣∣∣ ≤
∫

D

|A1/2∇η| |ηA1/2∇u| |u| dx

≤ 2

√
Λ
δ

‖ηA1/2∇u‖L2(D)‖u‖L2(D).

The third integral can be estimated as∣∣∣∣
∫

D

η2(∇u) · bu dx

∣∣∣∣ ≤
∫

D

η|b| η|∇u| |u| dx ≤ ‖|b|‖∞
∫

D

η|∇u| |u| dx

≤ ‖|b|‖∞
(∫

D

η2|∇u|2 dx

)1/2

‖u‖L2(D)

≤ ‖|b|‖∞√
λ

‖ηA1/2∇u‖L2(D)‖u‖L2(D)
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and, similarly, one has for the fourth integral∣∣∣∣
∫

D

η2u c · ∇u dx

∣∣∣∣ ≤ ‖|c|‖∞√
λ

‖ηA1/2∇u‖L2(D)‖u‖L2(D).

Since
2‖ηA1/2∇u‖L2(D)‖u‖L2(D) ≤ 1

ε
‖ηA1/2∇u‖2

L2(D) + ε‖u‖2
L2(D)

with ε := 4
√

Λ/δ + λ−1/2‖|b| + |c|‖∞, we end up with

‖ηA1/2∇u‖2
L2(D) ≤ 2

(
ε2

2
+

4
δ
‖|b|‖∞ + ‖d‖∞

)
‖u‖2

L2(D).

This leads to
‖ηA1/2∇u‖L2(D) ≤ c

δ
‖u‖L2(D),

where

c2 =
(

4
√

Λ +
δ√
λ
‖|b| + |c|‖∞

)2

+ 8δ‖|b|‖∞ + 2δ2‖d‖∞,

and hence

‖∇u‖L2(K) ≤ ‖η∇u‖L2(D) ≤ λ−1/2‖ηA1/2∇u‖L2(D) ≤ c

λ1/2δ
‖u‖L2(D). �

Remark 3.3. From the previous proof it can be seen that d does not enter estimate
(17) if d ≥ 0.

Lemma 3.4. Assume that D2 ⊂ D is a convex domain such that for some η > 0
it holds that

0 < diamD2 ≤ η dist(D2, ∂D).
Then for any ε > 0 there is a subspace W ⊂ X(D2) so that

(18) distL2(D2)(u, W ) ≤ ε‖u‖L2(D) for all u ∈ X(D),

and dim W ≤ cn
η�| log ε|�n+1 + �| log ε|�, where cη = cAcRe(2 + η).

Proof. Let 	 := �| log ε|�. We consider a nested sequence of convex domains

Kj = {x ∈ R
n : dist(x, D2) ≤ rj}

with real numbers rj := (1 − j/	)dist(D2, ∂D), j = 0, . . . , 	. Notice that D2 =
K� ⊂ K�−1 ⊂ · · · ⊂ K0 ⊂ D. Using the definition (16) of the space X we set
Xj := X(Kj).

Applying Lemma 3.1 to Kj with the choice k := �(cAcR(2 + η)	ε−1/�)n� we can
find a subspace Vj ⊂ Xj satisfying dim Vj ≤ k and

(19) distL2(Kj)(v, Vj) ≤ cA
diam Kj

n
√

k
‖∇v‖L2(Kj)

for all v ∈ Xj ∩H1(Kj). From Lemma 3.2 applied to (Kj, Kj−1) instead of (K, D),
we obtain

(20) ‖∇v‖L2(Kj) ≤
cR

dist(Kj, ∂Kj−1)
‖v‖L2(Kj−1) = cR

	

r0
‖v‖L2(Kj−1)

for all v ∈ Xj−1. Since any v ∈ Xj−1 also belongs to Xj ∩ H1(Kj), the estimates
(19) and (20) together with diamKj ≤ (2 + η)r0 may be combined:

(21) distL2(Kj)(v, Vj) ≤ ε1/�‖v‖L2(Kj−1) for all v ∈ Xj−1.
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Let u ∈ X(D) and v0 := u|K0 ∈ X0. By the last estimate we have v0|K1 = u1+v1

with u1 ∈ V1 and
‖v1‖L2(K1) ≤ ε1/� ‖v0‖L2(K0).

Consequently, v1 belongs to X1. Similarly, for all j = 1, . . . , 	, we are able to find an
approximant uj ∈Vj so that vj−1|Kj =uj + vj and ‖vj‖L2(Kj)≤ε1/� ‖vj−1‖L2(Kj−1).
Using the restrictions of Vj to the smallest domain D2 = K�, let

W := span{Vj |D2 , j = 1, . . . , 	}.
Then W is a subspace of X(D2) and, since v0|D2 = v� +

∑�
j=1 uj|D2 , we are led to

distL2(D2)(v0, W ) ≤ ‖v�‖L2(D2) ≤
(
ε1/�

)�

‖v0‖L2(K0) ≤ ε‖u‖L2(D),

where the last inequality is due to K0 ⊂ D.
The dimension of W is bounded by

∑�
j=1 dim Vj ≤ 	k. Since ε−1/� ≤ e we obtain

dim W ≤ (cAcRe(2 + η))n	n+1 + 	. �

The previous lemma will now be applied to the Green functions G(x, ·) with
x ∈ D1 ⊂ Ω. For this purpose let gx be the extension of G(x, ·) to R

n \ D1; i.e.,

(22) gx(y) :=

{
G(x, y), y ∈ Ω \ D1,

0, y ∈ R
n \ Ω.

Then gx is in X(Rn \ D1). Note that its approximant Gk(x, ·) from the following
theorem is of the desired form (5).

Theorem 3.5. Let D1 ⊂ Ω and D2 ⊂ R
n convex. Assume that there is η > 0 such

that
0 < diamD2 ≤ η dist(D1, D2).

Then for any ε > 0 there is a separable approximation

Gk(x, y) =
∑

k
i=1ui(x)vi(y) with k ≤ kε := cn

η�| log ε|�n+1 + �| log ε|�,
so that for all x ∈ D1,

(23) ‖G(x, ·) − Gk(x, ·)‖L2(D2∩Ω) ≤ ε‖G(x, ·)‖L2(D̂2),

where D̂2 := {y ∈ Ω : 2η dist(y, D2) < diam D2} and

cη =2cAe(1 + η)

√(
4
√

κ+
δ

λ
‖|b|+|c|‖∞

)2

+8
δ

λ
‖|b|‖∞+2

δ2

λ
‖d‖∞, δ :=

diamD2

2η
.

Proof. Let D = {y ∈ R
n : 2η dist(y, D2) < diam D2}. Note that because of

dist(D1, D) > 0, we have gx ∈ X(D) for all x ∈ D1. Since in addition diamD2 ≤
2η dist(D2, ∂D), Lemma 3.4 can be applied with η replaced by 2η. Let {v1, . . . , vk}
be a basis of the subspace W ⊂ X(D2) with k = dimW ≤ cn

2η�| log ε|�n+1+�| log ε|�.
By means of (18) gx can be decomposed into gx = ĝx + rx with ĝx ∈ W and
‖rx‖L2(D2) ≤ ε‖gx‖L2(D). Since gx and ĝx vanish outside of Ω, we actually have
‖rx‖L2(D2∩Ω) ≤ ε‖G(x, ·)‖L2(D̂2). Expressing ĝx by means of the basis of W , we
obtain

ĝx =
∑

k
i=1ui(x)vi

with coefficients ui(x) depending on the index x ∈ D1. The function Gk(x, y) :=∑k
i=1 ui(x)vi(y) satisfies estimate (23). �
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Note that since the constant cA does not depend on Ω, the geometry enters cη

only through the diameter. Hence, the shape of the domain does not influence our
approximation result.

The existence of degenerate approximants to the Green function will now be
used to prove existence of H-matrix approximants to the discrete inverse of L and
the inverse stiffness matrix.

3.2. H(P, k)-approximation of discrete operators. Using a finite element dis-
cretization, H1

0 (Ω) is approximated by Vh ⊂ H1
0 (Ω); i.e., for all v ∈ H1

0 (Ω)

(24) inf
vh∈Vh

‖v − vh‖H1 → 0 for h → 0.

In agreement with the assumptions of Section 2, let N = dimVh be the dimension
and {ϕi}i∈I a basis of Vh, where I := {1, . . . , N} is used as an index set. The
notation for the support of the finite element basis function is generalized to subsets
t ⊂ I as

(25) Xi := supp ϕi ⊂ Ω for i ∈ I, Xt :=
⋃
i∈τ

Xi for t ⊂ I.

In order to avoid technical complications, we consider a quasi-uniform and shape-
regular triangulation. Hence, the step size h := maxi∈I diam Xi fulfills

(26) volXi ≥ cvh
n.

The supports Xi may overlap. In accordance with the standard finite element
discretization, we require that each triangle belongs to the support of a bounded
number of basis functions; i.e., there is a constant cM > 0 so that

(27) cMvolXt ≥
∑
i∈t

volXi.

We use the notation J for the natural bijection J : R
N → Vh defined by Jx =∑

i∈I xiϕi. For quasi-uniform and shape-regular triangulations it is known (see [14,
Theorem 8.8.1]) that there are constants 0 < cJ,1 ≤ cJ,2 (independent of h and N)
such that

(28) cJ,1‖x‖h ≤ ‖Jx‖L2(Ω) ≤ cJ,2‖x‖h for all x ∈ R
N ,

where ‖ · ‖h is the naturally scaled Euclidean norm induced by the scalar product
〈x, y〉h = hn

∑
i∈I xiyi. Since J is also a function from R

N to H1
0 (Ω), the adjoint

J∗ ∈ L(H−1(Ω), RN ) with respect to 〈·, ·〉h is defined. We define the following three
N × N matrices,

S = J∗LJ, B = J∗L−1J, and M = J∗J.

S is the stiffness matrix, B the Galerkin discretization of the inverse of L, and M
is the mass matrix. The matrices S and M are sparse, while B as well as S−1 and
M−1 are dense.

Remark 3.6. M is positive definite and S is invertible for sufficiently small h.
Since the principal part of L is coercive and the lower-order terms constitute a
compact operator due to the compact embedding of L2 in H−1, L satisfies G̊arding’s
inequality

(Lu, u)L2(Ω) ≥ γ‖u‖2
H1(Ω) − c‖u‖2

L2(Ω) for all u ∈ H1(Ω).

From the Céa-Polski Lemma (cf. [18]), S is invertible if h is sufficiently small.
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We need the following lemma [11] by which the spectral norm of an H-matrix
can be estimated by its blockwise norms. P is again assumed to be generated as in
subsection 2.3.

Lemma 3.7. There is a constant csp such that for any matrix M ∈ H(P, k) the
following inequality holds:

‖M‖2 ≤ csp p max
b∈P

‖Mb‖2.

Theorem 3.8. Let Xt be convex for all t ∈ TI . For any ε > 0, let kε ∈ N be chosen
as in Theorem 3.5. Then for k ≥ max{kε, nmin}, there is BH ∈ H(P, k) such that

(29) ‖B − BH‖2 ≤ cn
ε

λ
p,

where cn = cn(κ, b, c, d, η, Ω) depends on η from (4) and diam Ω. p is the depth of
the cluster tree TI defined in subsection 2.1.

Proof. Let b = s × t ∈ P with min{#s, #t} ≤ nmin. In this case we simply set

(BH)b := Bb = (J∗L−1J)b.

Since the block (BH)b has at most nmin columns or rows, rank (BH)b ≤ k holds.
If b = s × t ∈ P with min{#s, #t} > nmin, then b satisfies (4). Applying

Theorem 3.5 with D1 = Xs, D2 = Xt there is G̃b(x, y) =
∑kε

i=1 ub
i(x)vb

i (y) such
that

‖G − G̃b‖L2(Xs×Xt) ≤ ε‖G‖L2(Xs×X̂t)
,

where X̂t := {x ∈ Ω : 2η dist(x, Xt) ≤ diam Xt}. Let the functions ub
i and vb

i be
extended to Ω by zero. We define the integral operator

Kbϕ =
∫

Ω

G̃b(·, y)ϕ(y) dy for supp ϕ ⊂ Ω

and set (BH)b = (J∗KbJ)b. The rank of (BH)b is bounded by kε since each term
ub

i(x)vb
i (y) in G̃b produces one rank 1 matrix in (J∗KbJ)b.

Let x ∈ R
t and y ∈ R

s. To see that (BH)b approximates the block Bb, remember
the representation (14) of L−1 and use (28). The estimate

〈(B − BH)bx, y〉h = 〈J∗(L−1 − Kb)Jx, y〉h = ((L−1 − Kb)Jx, Jy)L2

≤ ‖G − G̃b‖L2(Xs×Xt)‖Jx‖L2(Xt)‖Jy‖L2(Xs)

≤ ε‖G‖L2(Xs×X̂t)
‖Jx‖L2(Ω)‖Jy‖L2(Ω)

≤ εc2
J,2‖G‖L2(Xs×X̂t)

‖x‖h‖y‖h

proves ‖(B − BH)b‖2 ≤ εc2
J,2‖G‖L2(Xs×X̂t)

.
Although G(x, ·) ∈ W 1,1(Ω) for all x ∈ Ω, G(·, ·) does not belong to L2(Ω×Ω) as

soon as n ≥ 4. From (12) it can be seen that ‖G‖L2(Xs×X̂t)
may increase when the

sets Xs, X̂t are approaching each other. The construction of X̂t, however, ensures

δ := dist(Xs, X̂t) ≥ 1
2
dist(Xs, Xt) ≥ 1

2η
diam Xs

as well as 2ηδ ≥ diam Xt due to (4). Hence (12) implies, for the case n ≥ 3,

‖G‖L2(Xs×X̂t)
≤ cn(κ, b, c, d)

λ
δ2−n

√
(volXs)(vol X̂t).



1190 MARIO BEBENDORF

Using vol X̂t ≤ ωn(1
2diam X̂t)n ≤ ωn(η + 1/2)nδn and volXs ≤ ωn(ηδ)n, where ωn

is volume of the unit ball in R
n, we see that

‖G‖L2(Xs×X̂t)
≤ c̄η

cn(κ, b, c, d)
λ

δ2 with c̄η := ωn(η(η + 1/2))n/2.

The rough estimate δ ≤ diamΩ together with Lemma 3.7 yields (29). Using (13),
the case d = 2 can be treated in a similar way. �

Remark 3.9. Assume that each (possibly nonconvex) set Xt has a convex superset
Yt satisfying the admissibility condition (4). Then Theorem 3.8 remains valid for
Xs × Xt. Therefore, according to Remark 2.2, the assumption on the convexity of
Xt in Theorem 3.8 is reasonable even for practical purposes.

The previous theorem shows that we are able to approximate the discrete inverse
of L by H-matrices. Our aim however is to prove that the inverse of the stiffness
matrix S possesses this property. For this purpose we use the fact that S−1 can be
approximated by M−1BM−1. The last product, in turn, can be approximated by
an H-matrix. In [4] we have already presented the details of the above arguments.
Since they are quite technical, we just give the main results without proofs.

The finite element approximation is connected with the Ritz projection Ph =
JA−1J∗L : H1

0 (Ω) → Vh. If u ∈ H1
0 (Ω) is the solution of the variational problem

a(u, v) = f(v), uh = Phu is its finite element solution. The FE error is then given
by

eh(u) := ‖u − Phu‖L2(Ω),

and the weakest form of the finite element convergence is described by

(30) eh(u) ≤ εh‖f‖L2(Ω) for all u = L−1f, f ∈ L2(Ω),

where εh → 0 as h → 0.

Remark 3.10. Due to our quite weak assumptions on the smoothness of the co-
efficients in (6), one cannot specify the behavior of εh for h → 0.

Lemma 3.11. It holds that ‖S−1 − M−1BM−1‖2 ≤ 2c−4
J,1c

2
J,2εh.

Since the product of two H-matrices is an H-matrix with augmented rank (cf.
[11]), it remains to show that M−1 can be approximated by an H-matrix NH.
Then, CH := NHBHNH approximates S−1.

Lemma 3.12. For any ε > 0, there is NH ∈ H(P, kε) satisfying

‖M−1 − NH‖2 ≤ ε‖M−1‖2

with kε = O(| log ε|n).

Gathering all previous results, we obtain the existence of H-matrix approximants
to the inverse stiffness matrix.

Theorem 3.13. Let εh > 0 be the finite element error from (30) and p the depth
of the cluster tree TI defined in subsection 2.1. Then there is a constant c̃ > 0
defining k := c̃p2 logn+1 p

εh
and there is CH ∈ H(P, k) such that

(31) ‖S−1 − CH‖2 ≤ cnεh,

where cn = cn(κ, λ, ‖L−1‖H1←H−1 , b, c, d, η, diamΩ). If εh = O(hβ) for some β >

0, k = O(logn+3 N) holds.
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Theorem 3.13 states that S−1 can be approximated to an accuracy determined
by the FE error, which is sufficient since the accuracy of the solution cannot be
improved by a better approximation of S−1. In the following section, however, an
inversion algorithm is devised, which, as we will see in the numerical results, can
reach any prescribed accuracy.

4. Algorithms

Since H(P, k) is not a linear space, we have to replace the usual matrix operations
by truncated ones. Starting from the H-matrix addition, we define an H-matrix
multiplication. Using these modified operations it is possible to define an H-matrix
inversion based on the Frobenius formulas. These ideas already appeared in the
early papers on H-matrices (cf. [15, 16]).

4.1. Truncated addition. In order to make the sum of two H(P, k)-matrices be
in H(P, k), we have to add them blockwise and truncate each sum UV T , U =
(U1, U2) ∈ R

s×2k, V = (V1, V2) ∈ R
t×2k, of two rank k blocks U1V

T
1 and U2V

T
2 to

a matrix of rank at most k. For this purpose we have to assume that for a given
precision ε > 0, a matrix R of rank 	 ≤ k exists such that ‖UV T − R‖2 < ε. The
matrix R can be found by the following algorithm, which was also used in [2] for
finding the approximant of lowest rank in an ε-neighborhood of a low-rank matrix.
procedure truncate(U, V, k, var Ũ , var Ṽ )
begin

Compute the QR-decompositions U = QURU and V = QV RV .
Compute M := RURT

V ∈ R
2k×2k.

Compute the singular value decomposition M = XSY T .
Find the smallest 	 such that s�+1 ≤ εs1, where s1 ≥ · · · ≥ s2k are the

diagonal entries of S.
Let S� and Y� be the first 	 columns of S and Y , respectively.
Compute Ũ := QUXS� and Ṽ := QV Y�.

end

Obviously, Ũ Ṽ T has rank 	 and for the error in spectral norm it holds that

‖UV T − Ũ Ṽ T ‖2 =
s�+1

s1
‖UV T ‖2 ≤ ε‖UV T ‖2.

The actual rank of a block within an H-matrix may therefore be less than k.
The truncated addition will be denoted by ⊕ε and we define the addition of two

submatrices A, B in the entries b̂ ∈ TI×I by

A ⊕ B = {Ab ⊕ε Bb for all b ∈ P, b is a descendant of b̂ in TI×I}.
The previous truncation algorithm needs O(k2(|s| + |t|)) operations if b = s × t.
Hence, exploiting the block hierarchy the complexity for the H-matrix addition of
two matrices from H(P, k) can be shown to be of order η−nk2N log N .

4.2. Truncated matrix-matrix multiplication. Since the partition P consists
of the leaves of the block cluster tree TI×I , we are able to recursively define a
modified matrix-matrix multiplication C

⊕= A � B, A ∈ H(P, k), B ∈ H(P, k),
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making use of the partitioned matrix-matrix multiplication. Let r × s, s × t, r × t ∈
TI×I be block clusters. In order to define what is meant with Cr×t

⊕= Ar×s �Bs×t

we have to distinguish three cases.

(1) All three blocks r × s, s × t, and r × t have sons in the tree TI×I .[
Cr1×t1 Cr1×t2

Cr2×t1 Cr2×t2

]
⊕=

[
Ar1×s1 Ar1×s2

Ar2×s1 Ar2×s2

]
�

[
Bs1×t1 Bs1×t2

Bs2×t1 Bs2×t2

]

is recursively defined by

Cr1×t1
⊕= Ar1×s1 � Bs1×t1 , Cr1×t1

⊕= Ar1×s2 � Bs2×t1 ,

Cr1×t2
⊕= Ar1×s1 � Bs1×t2 , Cr1×t2

⊕= Ar1×s2 � Bs2×t2 ,

Cr2×t1
⊕= Ar2×s1 � Bs1×t1 , Cr2×t1

⊕= Ar2×s2 � Bs2×t1 ,

Cr2×t2
⊕= Ar2×s1 � Bs1×t2 , Cr2×t2

⊕= Ar2×s2 � Bs2×t2 .

(2) One of the blocks r × s and s × t is a leaf in TI×I .
Assume that s× t is a leaf, then Bs×t has a representation Bs×t = UBV T

B ,
UB ∈ R

s×k, VB ∈ R
t×k.

Cr×t
⊕= Ar×s � Bs×t

in this case is defined as

Cr×t := Cr×t ⊕ Ar×sUBV T
B ,

where Ar×sUB are k H-matrix-vector products.
(3) r × t has no sons in TI×I , and r × s, s × t have sons in the tree TI×I .

For the definition of

Cr×t
⊕=

[
Ar1×s1 Ar1×s2

Ar2×s1 Ar2×s2

]
�

[
Bs1×t1 Bs1×t2

Bs2×t1 Bs2×t2

]
,

we introduce matrices R1, R2, R3, and R4 by

R1 = R2 = R3 = R4 = 0,

and

R1
⊕= Ar1×s1 � Bs1×t1 , R1

⊕= Ar1×s2 � Bs2×t1 ,

R2
⊕= Ar1×s1 � Bs1×t2 , R2

⊕= Ar1×s2 � Bs2×t2 ,

R3
⊕= Ar2×s1 � Bs1×t1 , R3

⊕= Ar2×s2 � Bs2×t1 ,

R4
⊕= Ar2×s1 � Bs1×t2 , R4

⊕= Ar2×s2 � Bs2×t2 ,

and set

Cr×t := Cr×t ⊕k

[ ([
R1 0
0 0

]
⊕k

[
0 R2

0 0

])
⊕k

([
0 0

R3 0

]
⊕k

[
0 0
0 R4

]) ]
.

If the truncation accuracy ε was chosen to be the machine precision, then C
⊕= A�B

would coincide with C := C +AB. The complexity of the truncated matrix-matrix
multiplication can be estimated as O(η−nk2N log2 N) (cf. [11]).
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4.3. Inversion. We assume that each block As×s, s ∈ TI , of A ∈ H(P, k) is invert-
ible. This is, for example, the case if A is positive definite. The matrix block As×s

corresponding to s ∈ TI \ L(TI) is subdivided into the sons of s × s:

As×s =
[
As1×s1 As1×s2

As2×s1 As2×s2

]
.

According to the Frobenius formulas for the inverse of A, it holds that

A−1
s×s =

[
A−1

s1×s1
+ A−1

s1×s1
As1×s2S

−1As2×s1A
−1
s1×s1

−A−1
s1×s1

As1×s2S
−1

−S−1As2×s1A
−1
s1×s1

S−1

]
,

where S is the Schur complement S = As2×s2−As2×s1A
−1
s1×s1

As1×s2 . The H-matrix
inverse Cs×s of As×s is defined by replacing the matrix-matrix multiplication and
the addition by the H-versions. We need a temporary matrix T ∈ H(P, k), which
together with C is initialized to zero.

procedure invertH(s, A, varC)
begin
if s ∈ L(TI) then Cs×s := A−1

s×s is the usual inverse.
else begin

invertH(s1, A, C).
Ts1×s2

�= Cs1×s1 � As1×s2 .
Ts2×s1

�= As2×s1 � Cs1×s1 .
As2×s2

⊕= As2×s1 � Ts1×s2 .
invertH(s2, A, C).
Cs1×s2

⊕= Ts1×s2 � Cs2×s2 .
Cs2×s1

⊕= Cs2×s2 � Ts2×s1 .
Cs1×s1

⊕= Ts1×s2 � Cs2×s1 .
end

end

The matrix A is destroyed during the previous algorithm, and C ∈ H(P, k) contains
an approximant of A−1. The cost for the computation of the H-inverse is mainly
determined by the cost for the H-multiplication. Therefore, an approximation to
the inverse of A can be obtained with complexity O(η−nk2N log2 N).

5. Numerical experiments

In this section the practical influence of the various terms of the differential
operator (6) on the efficiency and accuracy of the H-inverse is investigated. For
simplicity all tests are performed on a uniform triangulation of the unit square
Ω := (0, 1)2 in R

2. In each case the stiffness matrix S is built in the H-matrix
format; see Example 2.4. Then the inversion algorithm from subection 4.3 is applied
to it with a relative truncation accuracy ε. Hence, rank k is adaptively chosen and
is therefore expected to vary among the blocks. All tests were carried out on a
single processor of a SunFire 6800 – 900MHz.1

1The H-matrix library which was used for the tests is available under http://www.

mathematik.uni-leipzig.de/∼bebendorf/AHMED.html.



1194 MARIO BEBENDORF

Let uh ∈ R
N be the finite element solution; i.e., the solution of Suh = b, where

b is the vector with the components

bi =
∫

Ω

fϕi dx, i = 1, . . . , N,

and ũh = Cb, where C is the computed H-matrix approximant of S−1. Since

(32) ‖uh − ũh‖2 = ‖uh − CSuh‖2 ≤ ‖IN − CS‖2 ‖uh‖2,

the expression ‖IN − CS‖2 is an upper bound on the relative accuracy of ũh com-
pared with the finite element solution uh. Note that ũh cannot be a better ap-
proximation of u than uh is, since the proposed method is built on top of the
finite element method. Hence, in the following computations we will rely on the
expression ‖IN − CS‖2 as a measure of accuracy.

5.1. Principal parts. In the first example we consider operators L = −div A(x)∇.
The coefficients A of L are chosen to be of the form

A(x) =
[
1 0
0 α(x)

]
, x ∈ Ω,

where α(x) = 1 in the lower region of Figure 1 and a random number from the
interval [0, a] in the remaining part of the unit square. In order to avoid averaging
effects, the coefficient α possesses a two-level random structure: the randomly
chosen coefficient on each triangle is multiplied by a coefficient chosen randomly on
a scale of length

√
h, where the grid size h is defined through h(

√
N/2 + 1) = 1.

In Table 1 the accuracy ‖IN − CS‖2 of the H-matrix C and the CPU time
consumption are compared for different a and different problem sizes N . The
truncation accuracy ε is chosen such that ‖IN − CS‖2 is of order h.
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Figure 1. The coefficient α(x)
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Table 1.

a = 1.0 a = 10.0 a = 100.0
N h ε time [s] accuracy time [s] accuracy time [s] accuracy

14400 8.3e − 3 1e − 5 29.4 8.5e − 3 28.4 1.1e − 2 29.0 1.1e − 1
38025 5.1e − 3 2e − 6 146.7 6.2e − 3 138.6 6.9e − 3 143.2 1.5e − 2
65025 3.9e − 3 5e − 7 341.3 3.4e − 3 327.6 3.2e − 3 338.1 6.0e − 3

129600 2.8e − 3 2e − 7 1074.9 2.6e − 3 1008.0 2.8e − 3 1032.3 4.7e − 3
278784 1.9e − 3 5e − 8 3452.1 1.6e − 3 3201.7 2.0e − 3 3320.1 4.4e − 3
529984 1.3e − 3 2e − 8 9210.0 1.3e − 3 8529.0 1.5e − 3 8868.7 3.1e − 3

Table 2.

a = 1.0 a = 10.0 a = 100.0
time [s] accuracy time [s] accuracy time [s] accuracy

b = 1 333.4 3.2e − 3 334.4 5.0e − 3 385.4 8.0e − 3
b = 10 327.6 2.8e − 3 326.8 3.0e − 3 373.7 2.7e − 3
b = 100 329.7 3.1e − 3 330.2 2.6e − 3 394.3 2.0e − 3
b = 1000 331.9 2.7e − 3 333.1 3.5e − 3 388.2 1.8e − 3

In the next set of tests the same quantities for a smooth but oscillating coefficient
in the principal part are computed; i.e., α is chosen to be the function

α(x) = a(1 + cos(b2πx) sin(b2πy)).

By changing the coefficient a we are able to prescribe the amplitude of the oscillation
and by b the number of oscillations in x- and y-direction of Ω = (0, 1)2. Table 2
contains the results for N = 65025 and ε = 5e − 7.

The experiments show that in the absence of lower-order terms neither the ac-
curacy nor the CPU times needed to compute the approximant do depend much
on the coefficients.

5.2. Convection-diffusion. In this section operators of the type

L = −∆ + c · ∇
will be considered. In the first example the convection coefficient c is randomly
chosen; i.e., c(x) ∈ [−a, a]2 for x ∈ Ω. Table 3 shows ‖IN − CS‖2 for different
parameters a.

In the next example we investigate operators

Lu = −ε∆u + ux + uy

for different parameters ε > 0. We are particularly interested in a convection
dominated setting. Table 4 shows the results.

Table 3.

a = 1.0 a = 10.0 a = 100.0
N h ε time [s] accuracy time [s] accuracy time [s] accuracy

14641 8.2e − 3 1e − 5 31.4 7.1e − 3 31.5 7.5e − 3 31.2 9.5e − 3
38416 5.1e − 3 2e − 6 153.6 6.5e − 3 154.1 6.6e − 3 155.7 8.0e − 3
65025 3.9e − 3 5e − 7 355.9 2.9e − 3 356.9 3.0e − 3 356.2 3.5e − 3

129600 2.8e − 3 2e − 7 1100.3 2.5e − 3 1104.3 2.5e − 3 1106.4 2.6e − 3
278784 1.9e − 3 5e − 8 3503.2 1.5e − 3 3505.8 1.6e − 3 3518.7 1.5e − 3
597529 1.3e − 3 2e − 8 11072.6 1.4e − 3 11111.1 1.5e − 3 11105.7 2.0e − 3
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Table 4.

ε = 0.1 ε = 0.01 ε = 0.001
N time [s] accuracy time [s] accuracy time [s] accuracy

14641 30.0 5.7e − 3 29.4 9.4e − 4 60.9 2.7e − 4
38416 145.5 4.2e − 3 154.9 4.6e − 4 259.3 1.2e − 4
65025 336.8 1.9e − 3 362.3 2.6e − 4 481.0 2.5e − 5

129600 1046.5 1.6e − 3 1133.0 2.0e − 4 1233.0 1.8e − 5
278784 3311.4 9.4e − 4 3665.6 1.1e − 4 2998.5 1.3e − 5
597529 10452.4 1.0e − 3 11701.8 1.2e − 4 11370.6 9.5e − 6

Since the tables above show that it is possible to find an H-matrix C that
approximates S−1, from (32) it is obvious that ũh approximates the finite element
solution uh. This is especially true in the presence of boundary layers, as illustrated
in the following example. The solution of

−ε∆u + ux + uy = f,

where

f(x, y) = (x + y)(1 − e(x−1)/εe(y−1)/ε) + (x − y)(e(y−1)/ε − e(x−1)/ε)

with zero boundary conditions is known to be

u(x, y) = xy(1 − e(x−1)/ε)(1 − e(y−1)/ε).

Figure 2 compares the restrictions of u and ũh to the set {(x, x), x ∈ (0, 1)} for
ε = 0.01 and N = 14641. Obviously, the proposed inversion procedure is able to
handle boundary layers as long as the underlying finite element method is stable.

In the next example we consider convection in a direction that is aligned with
the grid; i.e., operators

Lu = −ε∆u + ux

for different parameters ε > 0 are investigated. The CPU times for computing the
approximants and their accuracies can be found in Table 5.

It is well known that if the ratio ε/h gets small, the finite element discretization
suffers from the loss of stability. As a consequence the stiffness matrix becomes
ill conditioned. It may even happen that S is not invertible. This behavior is
observable for small N if ε tends to zero: when changing ε = 0.01 to ε = 0.001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Figure 2. The solutions u and ũh.
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Table 5.

ε = 0.1 ε = 0.01 ε = 0.001
N time [s] accuracy time [s] accuracy time [s] accuracy

14641 30.3 6.3e − 3 31.4 6.6e − 4 47.4 1.3e − 4
38416 145.7 4.9e − 3 161.4 5.7e − 4 226.1 6.3e − 5
65025 339.0 2.2e − 3 365.7 1.8e − 4 463.9 1.8e − 5

129600 1053.9 1.9e − 3 1152.1 1.8e − 4 1235.8 1.4e − 5
278784 3323.3 1.1e − 3 3657.8 1.5e − 4 4135.5 6.3e − 6
597529 10457.6 1.0e − 3 11646.8 1.3e − 4 12208.7 7.9e − 6

the CPU time for N = 14641 increases by a factor of 1.5, while it is almost not
influenced in the case N = 597529, where the discretization is stable.

The proposed inversion procedure can also be applied to Shishkin meshes, which
should be used for a better convergence of the finite element method.

5.3. Diffusion-reaction. As a third kind of example we consider the operator
Lu = −∆u + du with a randomly chosen reaction term d(x) ∈ [0, a] for x ∈ Ω.
Since by adding a positive d to the operator −∆, the distance of the spectrum to
zero is increased. Hence, the larger the d, the better the approximation works. The
respective results can be found in Table 6.

Negative d (i.e., the Helmholtz equation) can also be handled as long as the
inverse of L is guaranteed to exist. If an integral formulation of the Helmholtz
equation is discretized, it is known that, due to the oscillatory kernel, the rank of
the blocks in the H-matrix approximant depends on the wave number. Therefore,
the method can still be applied, but it is only efficient if the wave number is not
too large. The same effect can be observed here.

Each column of Table 7 shows the approximation results for the respective d in
the case N = 129600. In order to be able to guarantee ‖IN −CS‖2 ∼ h, we have to
choose a higher truncation accuracy ε if the modulus of d is increased. Note that
d is now a constant. Hence, for large wave numbers the inversion procedure can be
applied, but gets less efficient.

As a last example we consider values d that are close to the eigenvalues of the
operator ∆. In the case of resonance (i.e., −d is an eigenvalue of S), the stiffness
matrix S is not invertible. Close to resonance the stiffness matrix is ill conditioned.
The functions

uk(x, y) := sin(2πkx) sin(2πky), k = 0, 1, . . . ,

Table 6.

a = 10.0 a = 100.0 a = 1000.0
N time [s] accuracy time [s] accuracy time [s] accuracy

14641 31.2 5.5e − 3 32.3 1.8e − 3 34.7 2.1e − 4
38416 154.4 4.9e − 3 161.6 1.3e − 3 172.2 7.2e − 5
65025 357.1 2.1e − 3 369.1 6.1e − 3 394.2 4.6e − 5

129600 1106.5 1.9e − 3 1133.9 5.8e − 4 1222.8 5.4e − 5
278784 3502.8 1.2e − 3 3610.1 3.7e − 4 3876.2 3.6e − 5
597529 11100.7 1.1e − 3 11500.8 3.6e − 4 12242.4 3.2e − 5
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Table 7.

d = −1.0 d = −10.0 d = −100.0 d = −1000.0 d = −10000.0
ε 2.0e − 7 1.0e − 7 2.0e − 9 5.0e − 10 2.0e − 11
accuracy 2.5e − 3 2.8e − 3 2.5e − 3 3.8e − 3 2.9e − 3
time [s] 1029.1 1076.7 1386.6 1678.3 3144.2

Table 8.

d −39.0 −39.5 −40.0 −40.15 −40.2 −40.25 −41.0

ε 2.0e − 8 2.0e − 8 1.0e − 8 2.0e − 9 5.0e − 10 2.0e − 9 2.0e − 8
accuracy 1.9e − 3 1.7e − 3 2.0e − 3 1.6e − 3 2.3e − 3 1.3e − 3 1.5e − 3
time [s] 1109.4 1114.6 1168.2 1299.4 1414.0 1292.6 1109.1

solve the eigenproblem

−∆u = λu in Ω = (0, 1)2,
u = 0 on ∂Ω,

with corresponding eigenvalues λk := (2πk)2. In Table 8 N = 129600 and −d is
chosen in a neighborhood of the second eigenvalue λ1 = 4π2.

From the numerical experiments above we conclude that the proposed method
is robust with respect to nonsmooth and anisotropic coefficients. Even convection-
diffusion problems with dominating convection can be solved efficiently without
special adaptation of the algorithm to this class of problems. Hence, the proposed
inversion procedure can be applied whenever a stable discretization of the operator
L is available. Helmholtz’ equation can be treated but the algorithms are only
efficient for relatively small wave numbers.

Acknowledgment. The author wishes to thank the referees for helpful sugges-
tions.
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[18] S. Prössdorf and B. Silbermann: Numerical analysis for integral and related operator equa-

tions, Akademie Verlag, Berlin, 1991. MR94f:65126a
[19] E. Tyrtyshnikov: Mosaic-skeleton approximations. Calcolo 33(1-2), 47–57 (1998), 1996.

MR99f:15005

Fakultät für Mathematik und Informatik, Universität Leipzig, Augustusplatz 10/11,

D-04109 Leipzig, Germany

E-mail address: bebendorf@math.uni-leipzig.de

http://www.ams.org/mathscinet-getitem?mr=MR96g:35054
http://www.ams.org/mathscinet-getitem?mr=2001k:35004
http://www.ams.org/mathscinet-getitem?mr=
http://www.ams.org/mathscinet-getitem?mr=83h:35033
http://www.ams.org/mathscinet-getitem?mr=99c:65012
http://www.ams.org/mathscinet-getitem?mr=94b:35001
http://www.ams.org/mathscinet-getitem?mr=2000c:65039
http://www.ams.org/mathscinet-getitem?mr=2001i:65053
http://www.ams.org/mathscinet-getitem?mr=89k:65162
http://www.ams.org/mathscinet-getitem?mr=94f:65126a
http://www.ams.org/mathscinet-getitem?mr=99f:15005

	1. Introduction
	2. Hierarchical matrices
	2.1. The cluster tree
	2.2. Admissibility condition
	2.3. Block cluster tree
	2.4. Storage and matrix-vector multiplication

	3. Approximation of FE inverses
	3.1. Degenerate approximation of the Green function
	3.2. bold0mu mumu H(P,k)H(P,k)RawH(P,k)H(P,k)H(P,k)H(P,k)-approximation of discrete operators

	4. Algorithms
	4.1. Truncated addition
	4.2. Truncated matrix-matrix multiplication
	4.3. Inversion

	5. Numerical experiments
	5.1. Principal parts
	5.2. Convection-diffusion
	5.3. Diffusion-reaction

	References

