Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations

Authors:
Ki-ichiro Hashimoto and Akinari Hoshi

Journal:
Math. Comp. **74** (2005), 1519-1530

MSC (2000):
Primary 11R18, 11R27, 11T22, 12F10, 12F12

DOI:
https://doi.org/10.1090/S0025-5718-05-01750-3

Published electronically:
February 14, 2005

MathSciNet review:
2137015

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A general method of constructing families of cyclic polynomials over with more than one parameter will be discussed, which may be called a geometric generalization of the Gaussian period relations. Using this, we obtain explicit multi-parametric families of cyclic polynomials over of degree . We also give a simple family of cyclic polynomials with one parameter in each case, by specializing our parameters.

**1.**B.C. Berndt and R.J. Evans and K.S. Williams,*Gauss and Jacobi sums*, Canadian Mathematical Society Series of Monographs and Advanced Texts, 1998. MR**1625181 (99d:11092)****2.**L.E. Dickson,*Cyclotomy, higher congruences and Waring's problem*, Amer. J. Math.**57**(1935), 391-424.**3.**C.F. Gauss,*Disquisitiones Arithmeticae*, Section 358. MR**0197380 (33:5545)****4.**M.-N. Gras,*Special units in real cyclic sextic fields*, Math. Comp.**48**(1987), 179-182. MR**0866107 (88m:11092)****5.**K. Hashimoto and A. Hoshi*Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups*, to appear in Tokyo J. Math.**6.**C. Jensen, A. Ledet and N. Yui,*Generic polynomials, constructive aspects of the inverse Galois problem*, Mathematical Sciences Research Institute Publications, Cambridge, 2002. MR**1969648 (2004d:12007)****7.**S.A. Katre and A.R. Rajwade,*Complete solution of the cyclotomic problem in**for any prime modulus l,**,*(*mod l*), Acta Arith.**45**(1985), 183-199. MR**0808019 (87d:11095)****8.**D.H. Lehmer and E. Lehmer,*The Lehmer project*, Math. Comp.**61**(1993), 313-317. MR**1189521 (93k:11100)****9.**E. Lehmer,*Connection between Gaussian periods and cyclic units*, Math. Comp.**50**(1988), 535-541. MR**0929551 (89h:11067a)****10.**H.W. Lenstra,*Rational functions invariant under a finite abelian group*, Invent. Math.**25**(1974), 299-325. MR**0347788 (50:289)****11.**G. Malle and B.H. Matzat,*Inverse Galois Theory*, Springer Monographs in Mathematics, Springer-Verlag, 1999. MR**1711577 (2000k:12004)****12.**K. Masuda,*On a problem of Chevalley*, Nagoya Math. J.**8**(1955), 59-63. MR**0069159 (16:993c)****13.**K. Masuda,*Application of theory of the group of classes of projective modules to existence problem of independent parameters of invariant*, J. Math. Soc. Japan**20**(1968), 223-232. MR**0223345 (36:6393)****14.**R. Schoof and L.C. Washington,*Quintic polynomials and real cyclotomic fields with large class numbers*, Math. Comp.**50**(1988), 543-556. MR**0929552 (89h:11067b)****15.**J-P. Serre,*Topics in Galois Theory*, Research notes in mathematics (Boston, Mass.); 1 (1991). MR**1162313 (94d:12006)****16.**R.G. Swan,*Invariant rational functions and a problem of Steenrod*, Invent. Math.**7**(1969), 148-158. MR**0244215 (39:5532)****17.**F. Thaine,*Properties that characterize Gaussian periods and cyclotomic numbers*, Proc. Amer. Math. Soc.**124**(1996), 35-45. MR**1301532 (96d:11115)****18.**F. Thaine,*On the coefficients of Jacobi sums in prime cyclotomic fields*, Trans. Amer. Math. Soc.**351**(1999), 4769-4790. MR**1475696 (2000c:11181****19.**F. Thaine,*Families of irreducible polynomials of Gaussian periods and matrices of cyclotomic numbers*, Math. Comp.**69**(2000), 1653-1666. MR**1653998 (2001a:11179)****20.**F. Thaine,*Jacobi sums and new families of irreducible polynomials of Gaussian periods*, Math. Comp.**70**(2001), 1617-1640. MR**1836923 (2003c:11141)****21.**F. Thaine,*Cyclic polynomials and the multiplication matrices of their roots*, J. Pure Appl. Algebra**188**(2004), 247-286. MR**2030817**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11R18,
11R27,
11T22,
12F10,
12F12

Retrieve articles in all journals with MSC (2000): 11R18, 11R27, 11T22, 12F10, 12F12

Additional Information

**Ki-ichiro Hashimoto**

Affiliation:
Department of Mathematical Sciences, School of Science and Engineering, Waseda University, 3–4–1 Ohkubo, Shinjuku-ku, Tokyo 169–8555, Japan

Email:
khasimot@waseda.jp

**Akinari Hoshi**

Affiliation:
Department of Mathematical Sciences, School of Science and Engineering, Waseda University, 3–4–1 Ohkubo, Shinjuku-ku, Tokyo 169–8555, Japan

Email:
hoshi@ruri.waseda.jp

DOI:
https://doi.org/10.1090/S0025-5718-05-01750-3

Keywords:
Inverse Galois theory,
generic polynomials,
cyclic polynomials,
Gaussian periods,
Jacobi sums,
cyclotomic numbers.

Received by editor(s):
November 13, 2002

Received by editor(s) in revised form:
May 19, 2004

Published electronically:
February 14, 2005

Article copyright:
© Copyright 2005
American Mathematical Society