Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations

Authors:
Ki-ichiro Hashimoto and Akinari Hoshi

Journal:
Math. Comp. **74** (2005), 1519-1530

MSC (2000):
Primary 11R18, 11R27, 11T22, 12F10, 12F12

DOI:
https://doi.org/10.1090/S0025-5718-05-01750-3

Published electronically:
February 14, 2005

MathSciNet review:
2137015

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A general method of constructing families of cyclic polynomials over with more than one parameter will be discussed, which may be called a geometric generalization of the Gaussian period relations. Using this, we obtain explicit multi-parametric families of cyclic polynomials over of degree . We also give a simple family of cyclic polynomials with one parameter in each case, by specializing our parameters.

**1.**Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams,*Gauss and Jacobi sums*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR**1625181****2.**L.E. Dickson,*Cyclotomy, higher congruences and Waring's problem*, Amer. J. Math.**57**(1935), 391-424.**3.**Carl Friedrich Gauss,*Disquisitiones arithmeticae*, Translated into English by Arthur A. Clarke, S. J, Yale University Press, New Haven, Conn.-London, 1966. MR**0197380****4.**M.-N. Gras,*Special units in real cyclic sextic fields*, Math. Comp.**48**(1987), 179-182. MR**0866107 (88m:11092)****5.**K. Hashimoto and A. Hoshi*Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups*, to appear in Tokyo J. Math.**6.**Christian U. Jensen, Arne Ledet, and Noriko Yui,*Generic polynomials*, Mathematical Sciences Research Institute Publications, vol. 45, Cambridge University Press, Cambridge, 2002. Constructive aspects of the inverse Galois problem. MR**1969648****7.**S.A. Katre and A.R. Rajwade,*Complete solution of the cyclotomic problem in**for any prime modulus l,**,*(*mod l*), Acta Arith.**45**(1985), 183-199. MR**0808019 (87d:11095)****8.**D. H. Lehmer and Emma Lehmer,*The Lehmer project*, Math. Comp.**61**(1993), no. 203, 313–317. MR**1189521**, https://doi.org/10.1090/S0025-5718-1993-1189521-9**9.**E. Lehmer,*Connection between Gaussian periods and cyclic units*, Math. Comp.**50**(1988), 535-541. MR**0929551 (89h:11067a)****10.**H. W. Lenstra Jr.,*Rational functions invariant under a finite abelian group*, Invent. Math.**25**(1974), 299–325. MR**0347788**, https://doi.org/10.1007/BF01389732**11.**Gunter Malle and B. Heinrich Matzat,*Inverse Galois theory*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR**1711577****12.**Katsuhiko Masuda,*On a problem of Chevalley*, Nagoya Math. J.**8**(1955), 59–63. MR**0069159****13.**Katsuhiko Masuda,*Application of the theory of the group of classes of projective modules to the existance problem of independent parameters of invariant*, J. Math. Soc. Japan**20**(1968), 223–232. MR**0223345**, https://doi.org/10.2969/jmsj/02010223**14.**R. Schoof and L.C. Washington,*Quintic polynomials and real cyclotomic fields with large class numbers*, Math. Comp.**50**(1988), 543-556. MR**0929552 (89h:11067b)****15.**Jean-Pierre Serre,*Topics in Galois theory*, Research Notes in Mathematics, vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992. Lecture notes prepared by Henri Damon [Henri Darmon]; With a foreword by Darmon and the author. MR**1162313****16.**Richard G. Swan,*Invariant rational functions and a problem of Steenrod*, Invent. Math.**7**(1969), 148–158. MR**0244215**, https://doi.org/10.1007/BF01389798**17.**F. Thaine,*Properties that characterize Gaussian periods and cyclotomic numbers*, Proc. Amer. Math. Soc.**124**(1996), no. 1, 35–45. MR**1301532**, https://doi.org/10.1090/S0002-9939-96-03108-5**18.**F. Thaine,*On the coefficients of Jacobi sums in prime cyclotomic fields*, Trans. Amer. Math. Soc.**351**(1999), 4769-4790. MR**1475696 (2000c:11181****19.**F. Thaine,*Families of irreducible polynomials of Gaussian periods and matrices of cyclotomic numbers*, Math. Comp.**69**(2000), no. 232, 1653–1666. MR**1653998**, https://doi.org/10.1090/S0025-5718-99-01142-4**20.**F. Thaine,*Jacobi sums and new families of irreducible polynomials of Gaussian periods*, Math. Comp.**70**(2001), no. 236, 1617–1640. MR**1836923**, https://doi.org/10.1090/S0025-5718-01-01312-6**21.**F. Thaine,*Cyclic polynomials and the multiplication matrices of their roots*, J. Pure Appl. Algebra**188**(2004), no. 1-3, 247–286. MR**2030817**, https://doi.org/10.1016/j.jpaa.2003.07.004

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11R18,
11R27,
11T22,
12F10,
12F12

Retrieve articles in all journals with MSC (2000): 11R18, 11R27, 11T22, 12F10, 12F12

Additional Information

**Ki-ichiro Hashimoto**

Affiliation:
Department of Mathematical Sciences, School of Science and Engineering, Waseda University, 3–4–1 Ohkubo, Shinjuku-ku, Tokyo 169–8555, Japan

Email:
khasimot@waseda.jp

**Akinari Hoshi**

Affiliation:
Department of Mathematical Sciences, School of Science and Engineering, Waseda University, 3–4–1 Ohkubo, Shinjuku-ku, Tokyo 169–8555, Japan

Email:
hoshi@ruri.waseda.jp

DOI:
https://doi.org/10.1090/S0025-5718-05-01750-3

Keywords:
Inverse Galois theory,
generic polynomials,
cyclic polynomials,
Gaussian periods,
Jacobi sums,
cyclotomic numbers.

Received by editor(s):
November 13, 2002

Received by editor(s) in revised form:
May 19, 2004

Published electronically:
February 14, 2005

Article copyright:
© Copyright 2005
American Mathematical Society