On the greatest prime factor of with effective constants
Author:
G. Harman
Journal:
Math. Comp. 74 (2005), 20352041
MSC (2000):
Primary 11N13
Published electronically:
February 16, 2005
MathSciNet review:
2164111
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let denote a prime. In this article we provide the first published lower bounds for the greatest prime factor of exceeding in which the constants are effectively computable. As a result we prove that it is possible to calculate a value such that for every there is a with the greatest prime factor of exceeding . The novelty of our approach is the avoidance of any appeal to Siegel's Theorem on primes in arithmetic progression.
 1.
M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, http://www.cse.iitk.ac.in/ primality.pdf.
 2.
R.
C. Baker and G.
Harman, The BrunTitchmarsh theorem on average, Analytic
number theory, Vol. 1 (Allerton Park, IL, 1995) Progr. Math.,
vol. 138, Birkhäuser Boston, Boston, MA, 1996,
pp. 39–103. MR 1399332
(97h:11096)
 3.
R.
C. Baker and G.
Harman, Shifted primes without large prime factors, Acta
Arith. 83 (1998), no. 4, 331–361. MR 1610553
(99b:11104)
 4.
D. Bernstein, Proving primality after AgrawalKayalSaxena, http://cr.yp.to/papers/ html#aks.
 5.
E.
Bombieri, J.
B. Friedlander, and H.
Iwaniec, Primes in arithmetic progressions to
large moduli. III, J. Amer. Math. Soc.
2 (1989), no. 2,
215–224. MR
976723 (89m:11087), http://dx.doi.org/10.1090/S08940347198909767236
 6.
Harold
Davenport, Multiplicative number theory, 2nd ed., Graduate
Texts in Mathematics, vol. 74, SpringerVerlag, New YorkBerlin, 1980.
Revised by Hugh L. Montgomery. MR 606931
(82m:10001)
 7.
J.M.
Deshouillers and H.
Iwaniec, On the BrunTitchmarsh theorem on average, Topics in
classical number theory, Vol. I, II (Budapest, 1981) Colloq. Math. Soc.
János Bolyai, vol. 34, NorthHolland, Amsterdam, 1984,
pp. 319–333. MR 781145
(86e:11085)
 8.
Kevin
Ford, Vinogradov’s integral and bounds for the Riemann zeta
function, Proc. London Math. Soc. (3) 85 (2002),
no. 3, 565–633. MR 1936814
(2003j:11089), http://dx.doi.org/10.1112/S0024611502013655
 9.
Morris
Goldfeld, On the number of primes 𝑝 for which
𝑝+𝑎 has a large prime factor, Mathematika
16 (1969), 23–27. MR 0244176
(39 #5493)
 10.
H.
L. Montgomery and R.
C. Vaughan, The large sieve, Mathematika 20
(1973), 119–134. MR 0374060
(51 #10260)
 11.
Yoichi
Motohashi, A note on the least prime in an arithmetic progression
with a prime difference, Acta Arith. 17 (1970),
283–285. MR 0268131
(42 #3030)
 12.
N.
M. Timofeev, The VinogradovBombieri theorem, Mat. Zametki
38 (1985), no. 6, 801–809, 956 (Russian). MR 823418
(87f:11073)
 13.
R.
C. Vaughan, An elementary method in prime number theory, Acta
Arith. 37 (1980), 111–115. MR 598869
(82c:10055)
 1.
 M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, http://www.cse.iitk.ac.in/ primality.pdf.
 2.
 R. C. Baker, G. Harman, The BrunTitchmarsh theorem on average, Analytic Number Theory (Proceedings in honor of Heini Halberstam), Birkhauser, Boston, 1996, 39103. MR 1399332 (97h:11096)
 3.
 R. C. Baker, G. Harman, Shifted primes without large prime factors, Acta Arith. 83 (1998), 331361. MR 1610553 (99b:11104)
 4.
 D. Bernstein, Proving primality after AgrawalKayalSaxena, http://cr.yp.to/papers/ html#aks.
 5.
 E. Bombieri, J. B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli III, J. American Math. Soc. 2 (1989), 215224. MR 0976723 (89m:11087)
 6.
 H. Davenport, Multiplicative Number Theory (second edition revised by H. L. Montgomery), SpringerVerlag, New York, 1980. MR 0606931 (82m:10001)
 7.
 J.M. Deshouillers and H. Iwaniec, On the BrunTitchmarsh theorem on average in Topics in classic number theory (ed. G. Halász), vol. 1 (Budapest, 1981), 319333. MR 0781145 (86e:11085)
 8.
 K. Ford, Vinogradov's Integral and bounds for the Riemann zetafunction, Proc. London Math. Soc. (3) 85 (2002), 565633. MR 1936814 (2003j:11089)
 9.
 M. Goldfeld, On the number of primes for which has a large prime factor, Mathematika 16 (1969), 2327. MR 0244176 (39:5493)
 10.
 H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119134. MR 0374060 (51:10260)
 11.
 Y. Motohashi, A note on the least prime in an arithmetic progression with a prime difference, Acta Arith. 17 (1970), 283285. MR 0268131 (42:3030)
 12.
 N. M. Timofeev, The VinogradovBombieri theorem, (English) Math. Notes 38 (1985), 947951. MR 0823418 (87f:11073)
 13.
 R. C. Vaughan, An elementary method in prime number theory, Acta Arith. 37 (1980), 111115. MR 0598869 (82c:10055)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
11N13
Retrieve articles in all journals
with MSC (2000):
11N13
Additional Information
G. Harman
Affiliation:
Department of Mathematics, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom
Email:
G.Harman@rhul.ac.uk
DOI:
http://dx.doi.org/10.1090/S0025571805017497
PII:
S 00255718(05)017497
Received by editor(s):
March 19, 2004
Received by editor(s) in revised form:
August 16, 2004
Published electronically:
February 16, 2005
Article copyright:
© Copyright 2005
American Mathematical Society
