Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method


Authors: Mario Ohlberger and Julien Vovelle
Journal: Math. Comp. 75 (2006), 113-150
MSC (2000): Primary 35L65, 65N15
DOI: https://doi.org/10.1090/S0025-5718-05-01770-9
Published electronically: August 12, 2005
MathSciNet review: 2176392
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we derive a priori and a posteriori error estimates for cell centered finite volume approximations of nonlinear conservation laws on polygonal bounded domains. Numerical experiments show the applicability of the a posteriori result for the derivation of local adaptive solution strategies.


References [Enhancements On Off] (What's this?)

  • [BCV95] S. Benharbit, A. Chalabi, and J.-P. Vila, Numerical viscosity and convergence of finite volume methods for conservation laws with boundary conditions, SIAM J. Numer. Anal. 32 (1995), no. 3, 775-796. MR 1335655 (96c:65141)
  • [BLN79] C. Bardos, A. Y. LeRoux, and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations 4 (1979), no. 9, 1017-1034. MR 0542510 (81b:35052)
  • [Car99] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999), no. 4, 269-361. MR 1709116 (2000m:35132)
  • [CCL95a] B. Cockburn, F. Coquel, and P. G. LeFloch, Convergence of the finite volume method for multidimensional conservation laws, SIAM J. Numer. Anal. 32 (1995), no. 3, 687-705. MR 1335651 (97f:65051)
  • [CCL95b] B. Cockburn, F. Coquel, and P.G. Lefloch, Convergence of the finite volumes method for multidimensional conservation laws, SIAM J. Num. Anal. 32 (1995), 687-705. MR 1335651 (97f:65051)
  • [CG95] B. Cockburn and H. Gau, A posteriori error estimates for general numerical methods for scalar conservation laws., Comput. Appl. Math. 14 (1995), 37-47. MR 1339916
  • [CH99a] C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate, M2AN Math. Model. Numer. Anal. 33 (1999), no. 1, 129-156. MR 1685749 (2000a:65119)
  • [CHG01] C. Chainais-Hillairet and E. Grenier, Numerical boundary layers for hyperbolic systems in 1-D, M2AN Math. Model. Numer. Anal. 35 (2001), no. 1, 91-106. MR 1811982 (2002m:65086)
  • [DIV03] J. Droniou, C. Imbert, and J. Vovelle, An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary, Ann. Inst. H. Poincari Anal. Non Liniaire 21 (2004), no. 5, 689-714. MR 2086755
  • [EGGH98] R. Eymard, T. Gallou $\ddot{\mbox{e}}$t, M. Ghilani, and R. Herbin, Error estimates for the approximate solution of a nonlinear hyperbolic equation given by finite volume schemes, IMA Journal of Numerical Analysis 18 (1998), 563-594. MR 1681074 (2000b:65180)
  • [EGH00] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VII (Amsterdam), North-Holland, Amsterdam, 2000, pp. 713-1020.MR 1804748 (2002e:65138)
  • [EGV03] R. Eymard, T. Gallouet, and J. Vovelle, Limit boundary conditions for fininte volume approximation of some physical problems, J. Comput. Appl. Math. 161 (2003), no. 2, 349-369. MR 2017019
  • [GM00] L. Gosse and C. Makridakis, Two a posteriori error estimates for one-dimensional scalar conservation laws, SIAM J. Numer. Anal. 38 (2000), no. 3, 964-988. MR 1781211 (2002e:65129)
  • [HH02] R. Hartmann and P. Houston, Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws, SIAM J. Sci. Comput. 24 (2002), no. 3, 979-1004. MR 1950521 (2004b:65149)
  • [HMSW99] P. Houston, J.A. Mackenzie, E. Süli, and G. Warnecke, A posteriori error analysis for numerical approximation of Friedrichs system, Numer. Math. 82(3) (1999), 433-470. MR 1692130 (2000d:65163)
  • [IV03] C. Imbert and J. Vovelle, Kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM J. Math. Anal. 36 (2004), no. 1, 214-232. MR 2083859
  • [JS95] C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimates., Commun. Pure Appl. Math. 48 (1995), 199-234.MR 1322810 (97b:76084)
  • [KKP02] S. Karni, A. Kurganov, and G. Petrova, A smoothness indicator for adaptive algorithms for hyperbolic systems, J. Comput. Phys. 178 (2002), no. 2, 323-341.MR 1899180 (2003c:65075)
  • [KNR95] D. Kröner, S. Noelle, and M. Rokyta, Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions, Numer. Math. 71 (1995), no. 4, 527-560. MR 1355053 (96j:65087)
  • [KO00] D. Kröner and M. Ohlberger, A-posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions, Math. Comput. 69 (2000), 25-39. MR 1659843 (2000i:65135)
  • [KO03] M. Küther and M. Ohlberger, Adaptive second order central schemes on unstructured staggered grids., Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Ninth International Conference on Hyperbolic Problems held in Caltech, Pasadena, March 25-29, 2002 (Berlin/Heidelberg/New York) (T.Y. Hou and E. Tadmor, eds.), Springer, 2003. MR 2053216
  • [Kru70] S. N. Kruzhkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.) 81 (123) (1970), 228-255. MR 0267257 (42:2159)
  • [Kuz76] N. N. Kuznetsov, The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation, Z. Vycisl. Mat. i Mat. Fiz. 16 (1976), no. 6, 1489-1502, 1627. MR 0483509 (58:3510)
  • [MNRR96] J. Málek, J. Necas, M. Rokyta, and M. Ruzicka, Weak and measure-valued solutions to evolutionary PDEs, Chapman & Hall, London, 1996. MR 1409366 (97g:35002)
  • [Ohl01a] M. Ohlberger, A posteriori error estimates for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations, Numer. Math. 87(4) (2001), 737-761. MR 1815733 (2001m:65120)
  • [Ohl01b] M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, M2AN Math. Model. Numer. Anal. 35(2) (2001), 355-387. MR 1825703 (2002a:65142)
  • [Ott96] F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 8, 729-734.MR 1387428 (97c:35132)
  • [Ser96] D. Serre, Systèmes de lois de conservation. II, Diderot Editeur, Paris, 1996, Structures géométriques, oscillation et problèmes mixtes. [Geometric structures, oscillation and mixed problems]. MR 1459989 (99e:35144)
  • [SH95] E. Süli and P.-A. Houston, Finite element methods for hyperbolic problems: a posteriori analysis and adaptivity, Report 96/09, Computing Laboratory, Oxford, May 1995; Inst. Math. Appl. Conf. Ser. New Ser., vol. 63, Oxford Univ. Press, New York, 1997, pp. 441-471. MR 1628356 (99i:65107)
  • [Sze91] A. Szepessy, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 6, 749-782. MR 1135992 (92g:65115)
  • [Tad91] E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations., SIAM J. Numer. Anal. 28 (1991), 891-906.MR 1111445 (92d:35190)
  • [Tan01] T. Tang, Error estimates of approximate solutions for nonlinear scalar conservation laws, Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000) (Basel), Internat. Ser. Numer. Math., 140, vol. 141, Birkhäuser, Basel, 2001, pp. 873-882. MR 1871175
  • [Vig97] M. H. Vignal, Schemas Volumes Finis pour des equations elliptiques ou hyperboliques avec conditions aux limites, convergence et estimations d'erreur, Thesis, L'Ecole Normale Superieure, Lyon, 1997.
  • [Vov02] J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Num. Math. 90 (2002), no. 3, 563-596.MR 1884231 (2002k:65158)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 35L65, 65N15

Retrieve articles in all journals with MSC (2000): 35L65, 65N15


Additional Information

Mario Ohlberger
Affiliation: Abteilung für Angewandte Mathematik, Universität Freiburg, Hermann-Herder-Str.10, D-79104 Freiburg, Germany
Email: mario@mathematik.uni-freibrug.de

Julien Vovelle
Affiliation: Universite de Provence, CMI, F-13453 Marseille, France
Email: vovelle@cmi.univ-mrs.fr

DOI: https://doi.org/10.1090/S0025-5718-05-01770-9
Keywords: Hyperbolic equation, initial boundary value problem, finite volume method, error estimate
Received by editor(s): January 12, 2004
Received by editor(s) in revised form: September 9, 2004
Published electronically: August 12, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society