NORMAL INTEGRAL BASES
FOR A_4 EXTENSIONS OF THE RATIONALS

JEAN COUGNARD

ABSTRACT. We give an algorithm for constructing normal integral bases of tame Galois extensions of the rationals with group A_4. Using earlier works we can do the same until degree 15.

INTRODUCTION

It is known [11] that every rank one projective module over the alternated group A_4 is free. Consequently, if $Q \subset N$ is a tame Galois extension with group A_4 (the ramification indices are prime to the residual characteristic), the ring of integers O_N is free over $\mathbb{Z}[A_4]$, i.e., there exists $\theta \in O_N$ which, together with its conjugates, gives a \mathbb{Z}-basis for O_N. Then one says that O_N has a normal integral basis. The aim of this work is to show how to construct such a basis.

The result in [11] is based on Swan theorems about induction properties in the projective class groups. Here we give a constructive version based on a fiber product which is more suited for our goal.

We recall well-known results about A_4 and $\mathbb{Z}[A_4]$ in the first part. The second section is devoted to the study of A_4 extensions of the rationals through Lagrange resolvents. In the third part, we use Lagrange resolvents to build maps reflecting the Galois-module structure. To compute some indices, we need a local study; this is done in the fourth part. This enables us to construct a normal integral basis and to give numerical examples.

In combination with the earlier papers ([7], [3], [4], [5]), we can now construct normal integral bases, up to the degree 15, when they exist, and for some cases in degree 16 (the abelian cases are solved by Hilbert-Speiser Theorem independently of the degree).

1. $\mathbb{Z}[A_4]$ PROJECTIVE MODULES

The group A_4 is defined by generators and relations:

$$\{\sigma, \tau, \nu \mid \nu^3 = \sigma^2 = \tau^2 = e, \sigma \tau = \tau \sigma, \nu \sigma \nu^2 = \tau, \nu \tau \nu^2 = \sigma \tau\}.$$

It is an extension of a cyclic group of order 3 by the normal subgroup $H = \{e, \sigma, \tau, \sigma \tau\}$ (isomorphic to the Klein group V_4). It has four order 3 subgroups, namely $\{e, \nu, \nu^2\}$ and its conjugates by $\sigma, \tau, \sigma \tau$. The order 2 subgroups are generated by $\sigma, \tau, \sigma \tau$, and there is no other nontrivial subgroup but those listed above.
There are three absolutely irreducible degree-1 representations of A_4 (inflated from the representations of A_4/H) and one, ρ, with degree 3 defined, up to conjugacy, by the images of σ and ν:

$$
\sigma \mapsto \rho(\sigma) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \nu \mapsto \rho(\nu) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.
$$

A direct verification gives $\rho(e + \sigma + \tau + \sigma\tau) = 0$ and

$$
\rho(e + \nu + \sigma\nu) = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(e + \nu + \sigma\nu^2) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(e + \nu + \sigma\tau\nu) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},
$$

while the images by ρ of $e + \nu^2 + \sigma\tau\nu^2$, $e + \nu + \tau\nu$, $e + \nu^2 + \tau\nu^2$ are transposed of the previous ones.

The morphism ρ from A_4 to $GL_3(\mathbb{Q})$ extends to a \mathbb{Q}-morphism of algebras from $\mathbb{Q}[A_4]$ to $M_3(\mathbb{Q})$. The image $\Lambda(\mathbb{Z}[A_4])$ is a \mathbb{Z}-order of $M_3(\mathbb{Q})$ included in the maximal order $M_3(\mathbb{Z})$. The relation $\rho(e + \sigma + \tau + \sigma\tau) = 0$ implies that Λ, as a \mathbb{Z}-module, has a basis given by $\{e, \nu, \nu^2, \sigma, \sigma\nu, \sigma\nu^2, \tau, \tau\nu, \tau\nu^2\}$. Denote these elements by b_i ($1 \leq i \leq 9$). Then the discriminant $\det(\text{Tr}(b_i b_j))$ is 2^{12}. As the discriminant of a maximal order, for instance $M_3(\mathbb{Z})$, is 1, we have $[M_3(\mathbb{Z}) : \Lambda] = 2^6$, so Λ is locally maximal, except at 2. We can also give a basis of $M_3(\Lambda)$ using ρ images of elements from $\mathbb{Q}[A_4]$:

$$
\rho((e + \sigma + \tau + \sigma\tau)^2), \rho(-\sigma - \tau + \sigma\tau), \rho(-\sigma - \tau - \sigma\tau) = \rho(-\sigma - \tau - \sigma\tau + \tau\nu^2).
$$

The order generated by $\mathbb{Z}[A_4]$, by the central idempotents $\frac{1}{12} \sum_{g \in A_4} g$, $\frac{1}{4} \{\sum_{x \in H} x\}$ and by $(\frac{e + \nu}{2})$, $(\frac{e + \nu^2}{2})$, is a maximal order in $\mathbb{Q}[A_4]$ whose image under ρ is $M_3(\mathbb{Z})$.

Proposition 1.1. Every rank one projective Λ-module is free.

Proof. We use A. Fröhlich’s formula giving the projective class-group $\text{Cl}(\Lambda)$ of Λ ([6], Th. 49–23): $\text{Cl}(\Lambda) \simeq \frac{J(\text{Det}(\Lambda))}{\text{im}(J(\text{Det}(\Lambda)))}$, where $J(\mathbb{Q})$ denotes the idele group of \mathbb{Q}, \mathbb{Q}^* the image by the diagonal imbedding of the rationals, and $\text{Det}(J(\Lambda))$ denotes the group of reduced norms of Λ-ideles. We know that the reduced norm is locally surjective over \mathbb{Z}_p^* at p for $p \neq 2$ ([6] Th. 51–22). Locally at 2: Λ^*_2 contains the elements uI_3 with $u \in \mathbb{Z}_2^*$, hence we find $\mathbb{Z}_2^* \supset \text{Det}(\Lambda^*_2) \supset (\mathbb{Z}_2^*)^3 = \mathbb{Z}_2^*$. So $\text{Cl}(\Lambda) \simeq \frac{J(\mathbb{Q})}{\text{im}(J(\mathbb{Q}))}$ is isomorphic to $\text{Cl}(\mathbb{Z}) = \{1\}$. \hfill \Box

To compute $\text{Cl}(\mathbb{Z}[A_4])$ we use the order 3 quotient from A_4/H and the image Λ of $\mathbb{Z}[A_4]$ by ρ. We obtain a fiber product:

$$
\begin{array}{ccc}
\mathbb{Z}[A_4] & \longrightarrow & \Lambda \\
\downarrow & & \downarrow \\
\mathbb{Z}[C_3] & \longrightarrow & \mathbb{Z}/4\mathbb{Z}[C_3]
\end{array}
$$

It is well known ([10]) that $\text{Cl}(\mathbb{Z}[C_3]) = 1$. The projective class-group is then isomorphic to $\text{im}(\mathbb{Z}[C_3]) \backslash (\mathbb{Z}/4\mathbb{Z}[C_3])^* / \text{im}(\Lambda^*)$ (cf. [11]).

Lemma 1.2. The morphism from Λ to $\mathbb{Z}/4\mathbb{Z}[C_3]$ gives a surjection from Λ^* to $(\mathbb{Z}/4\mathbb{Z})[C_3]^*$.

Proof: We have a surjective morphism from \((\mathbb{Z}/4\mathbb{Z}[C_3])^*\) to \((\mathbb{Z}/2\mathbb{Z}[C_3])^*\) whose kernel is \(1 + 2\mathbb{Z}/4\mathbb{Z}[C_3]\). The elements of \((\mathbb{Z}/4\mathbb{Z}[C_3])^*\) are the images of \pm \nu^i\), \(\nu^i(e + \nu + \sigma\nu)\), \(\nu^i(e + \nu^2 + \sigma\nu^2)\) invertible in \(\Lambda\) as is easily verified.

Thus we have obtained a new proof of Reiner–Ullom result \([11]\):

Theorem 1.3. Every finitely generated projective \(\mathbb{Z}[A_4]\)-module is free.

Corollary 1.4. Let \(\mathbb{Q} \subset N\) be a tame Galois extension with group \(A_4\). Then the ring of integers \(O_N\) has a normal integral basis.

2. **Lagrange Resolvents**

From now on, we restrict ourselves to the extensions \(\mathbb{Q} \subset N\) tamely ramified.

Let \(\mathbb{Q} \subset N\) be a Galois extension with group \(A_4\). From Section 1, the field \(N\) contains the cyclic cubic field \(k\) of invariants under \(H\). Inside \(N\), there are four quartic conjugate subfields. Denote \(K\) the invariant field by \(\{e, \nu, \nu^2\}\). The other quartic fields are \(K_\sigma\), invariant under \(\sigma\nu\sigma\) and, similarly the fields \(K_\tau, K_{\sigma\tau}\). The extension \(k \subset N\) is biquadratic bicyclic, and the quadratic extensions of \(k\) in \(N\) are \(K_\sigma, k_\tau, k_{\sigma\tau}\) respectively invariant by \(\sigma, \tau, \sigma\tau\). Apart from \(\mathbb{Q}\) and \(N\) these are the only subfields of \(N\).

The ring of integers \(O_N\) is a free rank one \(\mathbb{Z}[A_4]\)-module. The trace \(\text{Tr}_{N/k}\) is a surjective map over the free \(\mathbb{Z}[C_3]\)-module \(O_k\). We know how to construct a normal integral basis, either because \(k\) is a subfield of the cyclotomic field, with same conductor, or by using Châtelet’s technics \([2]\). The quotient \(O_N/O_k\) is isomorphic to \(\Lambda \otimes \mathbb{Z}[A_4]\)\(O_N\). It is \(\Lambda\)-projective, and therefore it is \(\Lambda\)-free. Given the fiber product

\[
\begin{array}{ccc}
O_N & \longrightarrow & O_N/O_k \\
\downarrow & & \downarrow \\
O_k & \longrightarrow & O_k/4O_k
\end{array}
\]

let \(\gamma\) be a \(\mathbb{Z}[C_3]\)-basis of \(O_k\) and let \(x\) be an element in \(O_N\) whose image in \(O_N/O_k\) is a \(\Lambda\)-basis. We can multiply \(x\) by \(\lambda\) of \(\mathbb{Z}[A_4]\) whose class is in \(\Lambda^*\) in such a way that \(\gamma\) and \(\lambda x\) have the same image in \(O_k/4O_k\). Then there exists \(c \in O_k\) such that \(\text{Tr}_{N/k}(\lambda x) = \gamma + 4c\). It follows that \(\theta = \lambda x - c\) is a \(\mathbb{Z}[A_4]\)-basis for \(O_N\). To construct a normal integral basis of \(O_N\) we are left with constructing \(x \in O_N\) whose image in \(O_N/O_k\) is a \(\Lambda\)-basis.

Let \(\hat{H}\) be the dual group of \(H\). The elements of \(\hat{H}\) are specified by their values:

\[
\begin{array}{cccc}
e & \sigma & \tau & \sigma\tau \\
\chi_0 & 1 & 1 & 1 \\
\chi_\sigma & 1 & -1 & -1 \\
\chi_\tau & 1 & 1 & 1 \\
\chi_{\sigma\tau} & 1 & -1 & -1 \\
\end{array}
\]

For \(\theta \in N\) and \(\chi \in \hat{H}\) we define the Lagrange resolvent \((\theta, \chi)\) of \(\theta\) and \(\chi\) by

\[
(\theta, \chi) = \sum_{h \in H} \chi(h^{-1})h(\theta) = \theta + \chi(\sigma)\sigma(\theta) + \chi(\tau)\tau(\theta) + \chi(\sigma\tau)\sigma\tau(\theta),
\]

i.e.,

\[
\begin{align*}
(\theta, \chi_0) &= \text{Tr}_{N/k}(\theta), \\
(\theta, \chi_\sigma) &= \theta + \sigma(\theta) - \tau(\theta) - \sigma\tau(\theta), \\
(\theta, \chi_\tau) &= \theta - \sigma(\theta) + \tau(\theta) - \sigma\tau(\theta), \\
(\theta, \chi_{\sigma\tau}) &= \theta - \sigma(\theta) - \tau(\theta) + \sigma\tau(\theta).
\end{align*}
\]
We list some straightforward properties of Lagrange resolvents below (further applications can be found in [9]).

Properties.

1. \(\Theta = \langle \theta, \chi_0 \rangle + \langle \theta, \chi_\sigma \rangle + \langle \theta, \chi_\tau \rangle + \langle \theta, \chi_{\sigma\tau} \rangle \), so if \(\langle \theta, \chi_\sigma \rangle = \langle \theta, \chi_\tau \rangle = \langle \theta, \chi_{\sigma\tau} \rangle = 0 \), then \(\theta \) belongs to \(k \) and conversely.

2. For \(h \in H \), we have \(\langle \theta, \chi \rangle^h := h(\langle \theta, \chi \rangle) = \chi(h)\langle \theta, \chi \rangle \) which gives: for every \(h \in H \setminus \{e\} \) the number \(\langle \theta, \chi_h \rangle \) is in \(k_h \) and \(\alpha_h = \langle \theta, \chi_h \rangle^2 \) belongs to \(k \).

3. If \(\theta \) is such that \(\langle \theta, \chi_h \rangle \neq 0 \) for \(h \in \{\sigma, \tau, \sigma\tau\} \), then for \(\theta' \in \mathbb{N} \) the quotient \(\frac{\langle \theta', \chi_h \rangle}{\langle \theta, \chi_h \rangle} \) belongs to \(k^* \).

4. The image of a Lagrange resolvent under \(\nu \) is determined by

\[
\langle \theta, \chi \rangle^\nu := \nu(\langle \theta, \chi \rangle) = \nu(\theta) + \nu(\sigma(\theta)) \chi(\sigma) + \nu(\tau(\theta)) \chi(\tau) + \nu(\sigma\tau(\theta)) \chi(\sigma\tau)
\]

We deduce that

\[
\langle \theta, \chi_0 \rangle^\nu = \langle \nu(\theta), \chi_0 \rangle, \quad \langle \theta, \chi_\sigma \rangle^\nu = \langle \nu(\theta), \chi_\sigma \rangle, \quad \langle \theta, \chi_\tau \rangle^\nu = \langle \nu(\theta), \chi_\tau \rangle, \quad \langle \theta, \chi_{\sigma\tau} \rangle^\nu = \langle \nu(\theta), \chi_{\sigma\tau} \rangle.
\]

For \(\theta \in K \), these formulas become

\[
\langle \theta, \chi_\sigma \rangle^\nu = \langle \theta, \chi_\tau \rangle, \quad \langle \theta, \chi_\tau \rangle^\nu = \langle \theta, \chi_{\sigma\tau} \rangle, \quad \langle \theta, \chi_{\sigma\tau} \rangle^\nu = \langle \theta, \chi_\sigma \rangle
\]

Then we deduce:

Corollary 2.1. For \(\theta \in K \), the \(\langle \theta, \chi_h \rangle^2 \) with \(h \) in \(\{\sigma, \tau, \sigma\tau\} \) are conjugate in \(k \).

Remark 2.2. If \(\theta \in K \setminus \mathbb{Q} \) the elements \(\langle \theta, \chi_h \rangle^2 \) \(h \in \{\sigma, \tau, \sigma\tau\} \) are pairwise distinct in \(k \). Otherwise they would be equal, as they are conjugate and, therefore, they would belong to \(\mathbb{Q} \). The same is true for the \(\langle \theta, \chi_h \rangle \), as \(\mathbb{N} \) contains no quadratic extension of \(\mathbb{Q} \).

Corollary 2.3. For \(\theta \in K \setminus \mathbb{Q} \), the product \(\langle \theta, \chi_\sigma \rangle \langle \theta, \chi_\tau \rangle \langle \theta, \chi_{\sigma\tau} \rangle \) belongs to \(\mathbb{Q}^* \).

Proof. The three numbers are conjugate under \(\nu \); then \(\nu \) fixes their product. By property 2, this product is also fixed by \(H \). \(\square \)

Remark 2.4. Under the same hypothesis the element \(\langle \theta, \chi_h \rangle \) does not belong to \(k \).

We mention, without proof, the following classical result.

Theorem 2.5. Assume that \(\alpha \) is an element of \(k^* \setminus k^* \) whose norm over \(\mathbb{Q} \) is in \(\mathbb{Q}^{\geq 2} \) and that \(s \) is an element in \(\mathbb{Q} \). Denote \(\alpha_1 = \alpha, \alpha_2 = \nu(\alpha), \alpha_3 = \nu^2(\alpha) \).

Then there exists a quartic extension \(\mathbb{Q} \subset K \) such that the Galois closure of \(K \) has group \(A_4 \), contains \(k \), and there exists an element \(\theta \in K \) such that \(\text{Tr}_{K/\mathbb{Q}}(\theta) = s \), \(\langle \theta, \chi_\sigma \rangle^2 = \alpha_1, \langle \theta, \chi_\tau \rangle^2 = \alpha_2, \langle \theta, \chi_{\sigma\tau} \rangle^2 = \alpha_3 \).
Suppose \(\alpha_1 \) is a root of \(X^3 + aX^2 + bX - q^2 \in \mathbb{Q}[X] \). Then \(z = 4\theta - s \) (where \(\theta = \frac{1}{4}(s + \sqrt[3]{s^3 + 4\alpha_2^2 - \alpha_3 + \sqrt{3}\alpha_3}) \)) is a root of \((X - z)(X - \sigma(z))(X - \tau(z))(X - \sigma\tau(z)) \). Proof.

By properties of Lagrange resolvents, we have

\[
\begin{align*}
\theta &= \frac{1}{4}(s + \sqrt[3]{s^3 + 4\alpha_2^2 - \alpha_3 + \sqrt{3}\alpha_3}) \\
\sigma(z) &= \frac{1}{4}(s + \sqrt[3]{s^3 + 4\alpha_2^2 - \alpha_3 - \sqrt{3}\alpha_3}) \\
\tau(z) &= \frac{1}{4}(s + \sqrt[3]{s^3 + 4\alpha_2^2 - \alpha_3 + \sqrt{3}\alpha_3}) \\
\sigma\tau(z) &= \frac{1}{4}(s + \sqrt[3]{s^3 + 4\alpha_2^2 - \alpha_3 - \sqrt{3}\alpha_3})
\end{align*}
\]

Then we get \((\langle 0, \chi \rangle, \langle 0, \chi^2 \rangle, \langle 0, \chi^3 \rangle)\) using properties of Lagrange resolvents. It is the square of an element in \(\mathbb{Q}^* \), its quotient by the discriminant of the
extension $k \subset N$ is the square of a principal ideal in k, and the Artin criterion ensures the existence of the relative basis.

Keep θ_0 as in the beginning of this section and $h \in \{\sigma, \tau, \sigma\tau\}$. Pick $\theta \in N$, such that $\langle \theta, \chi_h \rangle \neq 0$. Then the quotients $\frac{\langle \theta, \chi_h \rangle}{\langle \theta_0, \chi_h \rangle}$ belong to k. If we write $\alpha_h = \langle \theta, \chi_h \rangle^2 \in k$, we have $\langle h \rangle = \left(\frac{\langle \theta, \chi_h \rangle}{\langle \theta_0, \chi_h \rangle} \right) \mathcal{O}(\chi_h)^2 \mathcal{J}(\chi_h)\nu(\mathcal{J}(\chi_h))$. Then the ideal $\mathcal{J}(\chi_h)$ and the class of $\mathcal{O}(\chi_h)$ are invariantly connected to $\mathbb{Q} \subset N$.

We construct three \mathbb{Q}-linear maps from N to k by $f_h(\theta) = \langle \theta, \chi_h \rangle$ for $h = \sigma, \tau, \sigma\tau$. We gather them as $f(\theta) = (f_\sigma(\theta), f_\tau(\theta), f_{\sigma\tau}(\theta))$, and obtain a \mathbb{Q}-linear map f from N to k^3. Each of the f_h connects \mathcal{O}_K and $\mathcal{O}(\chi_h)^{-1}$, and the map f is the key ingredient for the Galois structure of \mathcal{O}_N.

Proposition 3.2. When restricted to K, the maps f_h are surjective with kernel \mathcal{Q}.

Proof. If $\theta \in \ker f_h$, we have $\langle \theta, \chi_h \rangle = 0$, hence $\nu(\langle \theta, \chi_h \rangle) = \langle \theta, \chi_h \rangle$ and $\nu^2(\langle \theta, \chi_h \rangle) = \langle \theta, \chi_h \rangle^2$. Property 1 shows that $4\theta = \langle \theta, \chi_0 \rangle = \mathrm{Tr}_{K/\mathbb{Q}}(\theta) \in \mathbb{Q}$. The kernel of f_h is included in \mathbb{Q}. The converse is immediate. The surjectivity of f_h follows from a consideration of the rank. \square

Proposition 3.3. The map f is surjective with kernel k.

Proof. It suffices to show the assertion regarding the kernel. By Property 1 in section 2 we have $4\theta = \langle \theta, \chi_0 \rangle + \langle \theta, \chi_\sigma \rangle + \langle \theta, \chi_\tau \rangle + \langle \theta, \chi_{\sigma\tau} \rangle$. As $\theta \in \ker(f)$, we get $4\theta = \langle \theta, \chi_0 \rangle \in k$. \square

Remark 3.4. It is important to observe that when we restrict f to \mathcal{O}_N, its image is just $\mathcal{O}_N/\mathcal{O}_K$, one of the terms of \mathbb{Z}.\]

Proposition 3.5. One has the inclusion $f_h(\mathcal{O}_N) \subset \mathcal{O}(\chi_h)^{-1}$.

Proof. Let θ in \mathcal{O}_N: the number $\langle \theta, \chi_h \rangle^2$ is equal to $f_h(\theta)^2\langle \theta_0, \chi_h \rangle^2$. Using remark 2.6, we write $\langle (\theta, \chi_h)^2 \rangle = (f_h(\theta)\mathcal{O}(\chi_h))^2\mathcal{J}(\chi_h)\nu(\mathcal{J}(\chi_h))$. As θ is an integer, so is $\langle (\theta, \chi_h)^2 \rangle$. But $\mathcal{J}(\chi_h)\nu(\mathcal{J}(\chi_h))$ is an ideal integer that is squarefree. It follows that $f_h(\theta)\mathcal{O}(\chi_h)$ is an integer ideal, hence $f_h(\theta) \in \mathcal{O}(\chi_h)^{-1}$ as expected. \square

Theorem 3.6. One has $4\mathcal{O}(\chi_h)^{-1} \subset f_h(\mathcal{O}_K) \subset \mathcal{O}(\chi_h)^{-1}$.

Proof. The right inclusion is true for every integer in N, hence in particular for those in K. For the left inclusion, let $\lambda_h \in 4\mathcal{O}(\chi_h)^{-1}$. We set $\lambda_h' = \nu(\lambda_h)$, $\lambda_h'' = \nu^2(\lambda_h)$ and we define

$$\theta = \frac{1}{4} \left[\lambda_h(\theta_0, \chi_h) + \lambda_h\langle \theta_0, \chi_h' \rangle + \lambda_h\langle \theta_0, \chi_h'' \rangle \right].$$

The action of ν on resolvents shows that θ is in K. As $\frac{\lambda_h}{\nu}$ is contained in $\mathcal{O}(\chi_h)^{-1}$, the number $\left(\frac{\lambda_h}{\nu} \right)^2 \langle \theta_0, \chi_h \rangle^2$ is in \mathcal{O}_K. Then $\frac{\lambda_h}{\nu}(\theta_0, \chi_h)$ is an integer. The same is true for its conjugates and their sum θ. Orthogonality relations between characters implies $f_h(\theta) = \lambda_h$ and therefore $4\mathcal{O}(\chi_h)^{-1} \subset f_h(\mathcal{O}_K)$. \square

Corollary 3.7. Let x_1, x_2, x_3 be a \mathbb{Z}-basis of $f_h(\mathcal{O}_K)$, and let $\theta_1, \theta_2, \theta_3 \in \mathcal{O}_K$ such that $f_h(\theta_i) = x_i$. Then $\{1, \theta_1, \theta_2, \theta_3\}$ is a \mathbb{Z}-basis of \mathcal{O}_K.\]
Proof. As \(f_h(O_K) \) is \(Z \)-free, the exact sequence
\[
0 \to Z \to O_K \to f_h(O_K) \to 0
\]
is split. Let \(g \) be a section and \(\theta'_i = g(x_i) \). Then \(O_K = Z \oplus Z\theta'_1 \oplus Z\theta'_2 \oplus Z\theta'_3 \). As \(\theta_i \) and \(\theta'_i \) are integers and \(f_h(\theta_i - \theta'_i) = 0 \), the differences \(\theta_i - \theta'_i \) belong to \(Z \).

We now focus on \(f \) and \(O_N \). Set \(M = \mathcal{R}(\chi_{\sigma})^{-1} \oplus \mathcal{R}(\chi_\tau)^{-1} \oplus \mathcal{R}(\chi_{\sigma\tau})^{-1} \).

Theorem 3.8. We have \(4M \subset f(O_N) \subset M \).

Proof. Analogous to the proof of Theorem 3.6, except that we use the relation
\[
\theta = 1/4 [\lambda_\sigma(\theta_0, \chi_\sigma) + \lambda_\tau(\theta_0, \chi_\tau) + \lambda_{\sigma\tau}(\theta_0, \chi_{\sigma\tau})]
\]
for a triple \(\{\lambda_\sigma, \lambda_\tau, \lambda_{\sigma\tau}\} \in M \). □

4. Localization. Index computations

This section is devoted to the structure of \(f_\sigma(O_K)/4\mathcal{R}(\chi_{\sigma})^{-1}, f(O_N)/4M \) and \(f(O_N) \) as abelian groups. We localize at \(2 \) to study their structure. Denote by \(A_{(2)} \) the localization of a module \(A \). The lattices \(\mathcal{R}(\chi_\kappa)^{-1} \) and \(M \) are defined up to multiplication by a scalar. Localization allows us to choose \(\theta_0 \) convenient for computations. Tameness implies the existence of normal integral basis of \(O_{k_{h,(2)}} \) as \(O_{k,(2)}[C_2] \)-modules and of \(O_{N,(2)} \) as \(O_{k,(2)}[H] \) and \(Z_{(2)}[A_4] \)-module. We first construct these bases.

There exists \(\alpha \in O_k \) such that \(N \) is equal to \(k(\sqrt{\alpha}, \sqrt{\nu(\alpha)}) \). As the extension is tame, we can suppose \(\alpha \in O_{k,(2)} \) so \(\alpha \nu(\alpha) \nu^2(\alpha) \in \mathbb{Z}_{(2)}^2 \). Tameness implies the existence for each prime \(p \) in \(O_{k,(2)} \) of \(\xi_p \) such that \(\alpha \equiv \xi_p \pmod{p^2} \); by the Chinese Remainder Theorem, we can get the same \(\xi \) for all the \(p \). As \(\alpha \) is a unit, the same is true for \(\xi \). We can change \(\alpha \) by \(\alpha \xi^{-2} \) and suppose \(\alpha \equiv 1 \pmod{4} \).

It is now clear that, for \(k_\sigma = k(\sqrt{\alpha}) \), the ring of integers \(O_{k_\sigma,(2)} \) has a \(O_{k,(2)} \) normal integral basis generated by \(1 + \sqrt{\nu(\alpha)} \). Acting on the latter by \(\nu \) and \(\nu^2 \) we get \(1 + \sqrt{\nu(\alpha)} / 2 \) (resp. \(1 + \sqrt{\nu^2(\alpha)} / 2 \)) as normal integral basis for \(O_{k_\sigma,(2)} \) (resp. \(O_{k_{\sigma\tau,(2)}(2)} \)).

We construct \(t = 1 + \sqrt{\alpha} + \sqrt{\nu(\alpha)} + \sqrt{\nu^2(\alpha)} + \sqrt{\nu^2(\alpha)} \) and its conjugates over \(k \):
\[
\sigma(t) = \frac{1 + \sqrt{\alpha} - \sqrt{\nu(\alpha)} - \sqrt{\nu^2(\alpha)}}{4}, \quad \tau(t) = \frac{1 - \sqrt{\alpha} + \sqrt{\nu(\alpha)} - \sqrt{\nu^2(\alpha)}}{4},
\]
\[
\sigma\tau(t) = \frac{1 - \sqrt{\alpha} - \sqrt{\nu(\alpha)} + \sqrt{\nu^2(\alpha)}}{4},
\]
as \(t \in O_{K,(2)} \). The discriminant of the \(O_{k,(2)} \)-lattice generated by these elements can be computed as in Theorem 3.1. We get \(\alpha \nu(\alpha) \nu^2(\alpha) \) which is a unit in \(O_{k,(2)} \). So \(t \) generates an \(O_{k,(2)}[H] \) normal integral basis for \(O_{N,(2)} \).

Let \(\gamma \in O_k \), with trace 1 over \(\mathbb{Q} \), generating a normal integral basis for \(O_k \), hence a local normal integral basis for \(O_{k,(2)} \). Consider \(\gamma t \). On the one hand, \(\gamma t \) is invariant by \(\nu \). On the other hand, \(\gamma \) is fixed by \(H \) so \(\nu^i \gamma t = \nu^i \gamma h(t) \). It follows immediately that \(\gamma t \) with its conjugates gives a \(Z_{(2)} \) normal basis of \(O_{N,(2)} \). One gets a \(Z_{(2)} \)-basis for \(O_{K,(2)} \): \(\{\text{Tr}_{N/K}(\gamma t), \text{Tr}_{N/K}(\gamma \sigma(t)), \text{Tr}_{N/K}(\gamma \tau(t)), 1\} \), this last element in place of \(\text{Tr}_{N/K}(\sigma \tau(t)) \) as \(\text{Tr}_{N/K}(\gamma t + \sigma(\gamma t) + \tau(t) + \sigma \tau(\gamma t)) = \text{Tr}_{N/K}(\gamma t) = 1 \).
Explicitly,
\[\text{Tr}_{N/K} (\gamma t) = t = \frac{1 + \sqrt{\alpha} + \nu(\alpha) + \sqrt{\nu^2(\alpha)}}{4}, \]
\[\text{Tr}_{N/K} (\gamma \sigma(t)) \text{Tr}_{N/K} \left(\frac{1 + \sqrt{\alpha} - \nu(\alpha) - \sqrt{\nu^2(\alpha)}}{4} \right) \]
\[= \frac{1 + \sqrt{\alpha} - \sqrt{\nu(\alpha)} - \sqrt{\nu^2(\alpha)}}{4} + \nu(\gamma) \frac{1 + \sqrt{\nu(\alpha)} - \sqrt{\nu^2(\alpha)} - \sqrt{\alpha}}{4} \]
\[+ \nu^2(\gamma) \frac{1 + \sqrt{\nu^2(\alpha)} - \sqrt{\alpha} - \sqrt{\nu(\alpha)}}{4} \]
\[= \frac{1}{4} + \sqrt{\alpha} \frac{\gamma - \nu(\gamma) - \nu^2(\gamma)}{4} + \sqrt{\nu(\alpha)} \frac{\gamma + \nu(\gamma) - \nu^2(\gamma)}{4} + \sqrt{\nu^2(\alpha)} \frac{\gamma - \nu(\gamma) + \nu^2(\gamma)}{4}, \]
\[\text{Tr}_{N/K} (\gamma \tau(t)) = \text{Tr}_{N/K} \left(\frac{1 - \sqrt{\alpha} + \sqrt{\nu(\alpha)} - \sqrt{\nu^2(\alpha)}}{4} \right) \]
\[= \frac{1 - \sqrt{\alpha} + \sqrt{\nu(\alpha)} - \sqrt{\nu^2(\alpha)}}{4} + \nu(\gamma) \frac{1 - \sqrt{\nu(\alpha)} + \sqrt{\nu^2(\alpha)} - \sqrt{\alpha}}{4} \]
\[+ \nu^2(\gamma) \frac{1 - \sqrt{\nu^2(\alpha)} + \sqrt{\alpha} - \sqrt{\nu(\alpha)}}{4} \]
\[= \frac{1}{4} + \sqrt{\alpha} \frac{\gamma - \nu(\gamma) + \nu^2(\gamma)}{4} + \sqrt{\nu(\alpha)} \frac{\gamma - \nu(\gamma) - \nu^2(\gamma)}{4} + \sqrt{\nu^2(\alpha)} \frac{\gamma + \nu(\gamma) + \nu^2(\gamma)}{4}. \]

To determine the index \(f_\sigma (O_K) \) in \(\mathfrak{R}(\chi_\sigma)^{-1} \), choose \(\theta_0 = t \) and compute the image \(f_\sigma (O_K) \).

The Lagrange resolvents are
\[\langle t, \chi_\sigma \rangle = \sqrt{\alpha}. \]

The choice of \(\theta_0 \) implies \(\mathfrak{R}(\chi_\sigma)^{-1} \) = \(O_{k,(2)} \). Also,
\[\langle \text{Tr}_{N/K}(\gamma \sigma(t)), \chi_\sigma \rangle = (2\gamma - 1)\sqrt{\alpha}, \]
\[\langle \text{Tr}_{N/K}(\gamma \tau(t)), \chi_\sigma \rangle = (2\nu^2(\gamma) - 1)\sqrt{\alpha}. \]

Finally:

Theorem 4.1. The image \(f_\sigma (O_K) \) is generated by \(f_\sigma (\text{Tr}_{N/K}(\gamma \sigma(t))) = 2\gamma - 1 \), \(f_\sigma (\text{Tr}_{N/K}(\gamma \tau(t))) = 2\nu^2(\gamma) - 1 \) and \(1 \). The quotient \(\mathfrak{R}(\chi_\sigma)^{-1} / f_\sigma (O_K) \) is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \).

In the same way (or by conjugation) we have
\[\langle t, \chi_\tau \rangle = \sqrt{\nu(\alpha)}, \]
\[\langle \text{Tr}_{N/K}(\gamma \sigma(t)), \chi_\tau \rangle = (2\nu(\gamma) - 1)\sqrt{\nu(\alpha)}, \]
\[\langle \text{Tr}_{N/K}(\gamma \tau(t)), \chi_\tau \rangle = (2\gamma - 1)\sqrt{\nu(\alpha)}, \]

hence \(f_\tau(t) = 1 \), \(f_\tau(\text{Tr}_{N/K}(\gamma \sigma(t))) = 2\nu(\gamma) - 1 \), \(f_\tau(\text{Tr}_{N/K}(\gamma \tau(t))) = 2\gamma - 1 \), and
\[\langle t, \chi_{\sigma \tau} \rangle = \sqrt{\nu^2(\alpha)}, \]
\[\langle \text{Tr}_{N/K}(\gamma \sigma(t)), \chi_{\sigma \tau} \rangle = (2\nu^2(\gamma) - 1)\sqrt{\nu^2(\alpha)}, \]
\[\langle \text{Tr}_{N/K}(\gamma \tau(t)), \chi_{\sigma \tau} \rangle = (2\nu(\gamma) - 1)\sqrt{\nu^2(\alpha)}. \]
Finally we find \(f_{\sigma}(t) = 1, f_{\sigma}(\text{Tr}_{N/K}(\gamma \sigma(t))) = 2\nu^2(\gamma) - 1, f_{\sigma}(\text{Tr}_{N/K}(\gamma \tau(t))) = 2\nu(\gamma) - 1 \). The quotients \(\mathcal{R}(\chi_\tau)^{-1}/f_\tau(O_K) \) and \(\mathcal{R}(\chi_\sigma)^{-1}/f_\tau(O_K) \) are isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \).

Now we determine \(f(O_{N,(2)}) \cong O_{N,(2)}/O_{k,(2)} \). We use the local normal integral basis in \(N/k \), generated by \(t \) and its conjugates. Each element in \(O_{N,(2)} \) is uniquely written as \(\sum_{h \in H} x_h h(t), x_h \in O_{k,(2)} \). That gives for Lagrange resolvents:

\[
\langle x, \chi_\sigma \rangle = \sum_{h \in H} x_h \langle h(t), \chi_\sigma \rangle = \sum_{h \in H} x_h \chi_\sigma(h) \langle t, \chi_\sigma \rangle,
\]

\[
\langle x, \chi_\tau \rangle = \sum_{h \in H} x_h \langle h(t), \chi_\tau \rangle = \sum_{h \in H} x_h \chi_\tau(h) \langle t, \chi_\tau \rangle,
\]

\[
\langle x, \chi_\sigma \chi_\tau \rangle = \sum_{h \in H} x_h \langle h(t), \chi_\sigma \chi_\tau \rangle = \sum_{h \in H} x_h \chi_\sigma \chi_\tau(h) \langle t, \chi_\sigma \chi_\tau \rangle.
\]

It follows that:

Proposition 4.2. The image \(f(O_{N,(2)}) \) is the set of all triples

\[
(x_\epsilon + x_\sigma - x_\tau - x_\sigma \tau, x_\epsilon - x_\sigma + x_\tau - x_\sigma \tau, x_\epsilon - x_\sigma - x_\tau + x_\sigma \tau),
\]

with \(x_\epsilon, x_\sigma, x_\tau, x_\sigma \tau \) in \(O_{k,(2)} \).

We can now prove

Theorem 4.3. The image \(f(O_N) \) is the set of all triples

\[
(y_\sigma, y_\tau, y_{\sigma \tau}) \in M = \mathcal{R}(\chi_\sigma)^{-1} \times \mathcal{R}(\chi_\tau)^{-1} \times \mathcal{R}(\chi_{\sigma \tau})^{-1}
\]

such that \(y_\sigma \equiv y_\tau \equiv y_{\sigma \tau} \mod 2 \). The image \(f_\sigma(O_N) \) equals \(\mathcal{R}(\chi_\sigma)^{-1} \). Similarly for \(f_\tau(O_N), f_{\sigma \tau}(O_N) \).

Proof. Let

\[
\begin{cases}
 x_\epsilon + x_\sigma - x_\tau - x_\sigma \tau = y_\sigma, \\
 x_\epsilon - x_\sigma + x_\tau - x_\sigma \tau = y_\tau, \\
 x_\epsilon - x_\sigma - x_\tau + x_\sigma \tau = y_{\sigma \tau}.
\end{cases}
\]

We have

\[
2x_\sigma - 2x_\tau = y_\sigma - y_\tau,
\]

\[
2x_\sigma - 2x_{\sigma \tau} = y_\sigma - y_{\sigma \tau},
\]

and deduce \(y_\sigma \equiv y_\tau \equiv y_{\sigma \tau} \mod 2 \).

Conversely, with the latter parity assumption, the elements \(x_\sigma - x_\tau = \frac{y_\sigma - y_\tau}{2}, x_\sigma - x_{\sigma \tau} = \frac{y_\sigma - y_{\sigma \tau}}{2} \) are integers. Choose for instance \(x_\sigma \). Then we deduce \(x_\tau, x_{\sigma \tau} \), and we find \(x_\epsilon \) using the first equation. \(\square \)

5. An Algorithm

By Remark 4.3 and Proposition 4.2, we can suppose \(\mathcal{R}(\chi_\sigma)^{-1} \) is prime to 2. It suffices to choose \(\theta_0 \) satisfying the congruence \(\theta_0 \equiv t \mod 4 \).

We construct a convenient \(\mathbb{Z} \)-basis of \(O_K \). In fact \(f_{\sigma}(O_K)/4f_{\sigma}(O_K) \) has for \(\mathbb{Z}/4\mathbb{Z} \)-basis on the one hand the images of 1, 2\(\gamma \) − 1, 2\(\nu^2(\gamma) \) − 1 and on the other hand those of \(f_{\sigma}(\theta_1), f_{\sigma}(\theta_2), f_{\sigma}(\theta_3) \). So there exists a matrix in \(\text{Gl}_3(\mathbb{Z}/4\mathbb{Z}) \) which sends the latter on the former. Such a matrix has determinant \(\pm 1 \). As there is a surjection from \(\text{Sl}_3(\mathbb{Z}) \) to \(\text{Sl}_3(\mathbb{Z}/4\mathbb{Z}) \), there exists a \(\mathbb{Z} \)-basis \(1, \varphi, \psi, \rho \) such that \(f_{\sigma}(\varphi) \equiv 1 \mod 4, f_{\sigma}(\psi) \equiv 2\gamma - 1 \mod 4, f_{\sigma}(\rho) \equiv 2\nu^2(\gamma) - 1 \mod 4 \). We choose such a basis.
Remarque 5.1. If the ideal $\mathcal{R}(\chi_\sigma)$ is principal, one can change θ_0 such that $\mathcal{R}(\chi_\sigma) = \mathcal{O}_k$; then, we can choose φ, ψ, ρ so as to have equalities rather than congruences.

We are now able to construct $x \in \mathcal{O}_N$ whose image in $\mathcal{O}_N/\mathcal{O}_k$ is a Λ-basis.
Consider the triple

$$\left(\frac{\langle \varphi, \chi_\sigma \rangle + \langle \psi, \chi_\sigma \rangle}{2(\theta_0, \chi_\sigma)}, \frac{\langle \varphi, \chi_\tau \rangle + \langle \psi, \chi_\tau \rangle}{2(\theta_0, \chi_\tau)}, -\frac{\langle \psi, \chi_\sigma \rangle + \langle \rho, \chi_\sigma \rangle}{2(\theta_0, \chi_\sigma)} \right).$$

The properties of ϕ, ψ, ρ imply first of all that it belongs to $\mathcal{R}(\chi_\sigma)^{-1} \times \mathcal{R}(\chi_\tau)^{-1} \times \mathcal{R}(\chi_\sigma)^{-1}$. In addition, each of the components is congruent to $\gamma \bmod 2$, so they are pairwise congruent modulo 2, and we can deduce from the previous theorem:

Corollary 5.2. There exists $x \in \mathcal{O}_N$ such that

$$f(x) = \left(\frac{\langle \varphi, \chi_\sigma \rangle + \langle \psi, \chi_\sigma \rangle}{2(\theta_0, \chi_\sigma)}, \frac{\langle \varphi, \chi_\tau \rangle + \langle \psi, \chi_\tau \rangle}{2(\theta_0, \chi_\tau)}, -\frac{\langle \psi, \chi_\sigma \rangle + \langle \rho, \chi_\sigma \rangle}{2(\theta_0, \chi_\sigma)} \right).$$

So, there exists $a \in \mathcal{O}_k$ such that

$$x = \frac{1}{4} \left[a + \frac{\langle \varphi, \chi_\sigma \rangle + \langle \psi, \chi_\sigma \rangle}{2} + \frac{\langle \varphi, \chi_\tau \rangle + \langle \psi, \chi_\tau \rangle}{2} - \frac{\langle \psi, \chi_\sigma \rangle + \langle \rho, \chi_\sigma \rangle}{2} \right].$$

This a is determined mod 4. The previous congruences implies $a \equiv \gamma \bmod 2$, which leads to a finite number of tries. Now consider the submodule $\mathbb{Z}[A_4]x$ of \mathcal{O}_N and its images under f_σ and f.

Lemma 5.3. We have $f_\sigma(\mathbb{Z}[A_4]x) = \mathcal{R}(\chi_\sigma)^{-1}$.

Proof. As x is an integer, we have $f_\sigma(\mathbb{Z}[A_4]x) \subset \mathcal{R}(\chi_\sigma)^{-1}$. By construction

$$f_\sigma(x) = \frac{\langle \varphi, \chi_\sigma \rangle + \langle \psi, \chi_\sigma \rangle}{2(\theta_0, \chi_\sigma)}, \quad f_\sigma(\nu(x)) = -\frac{\langle \psi, \chi_\sigma \rangle + \langle \rho, \chi_\sigma \rangle}{2(\theta_0, \chi_\sigma)}, \quad f_\sigma(\nu^2(x)) = \frac{\langle \varphi, \chi_\sigma \rangle + \langle \rho, \chi_\sigma \rangle}{2(\theta_0, \chi_\sigma)}$$

from which we deduce $f_\sigma(\mathbb{Z}[A_4]x) \supset \mathbb{Z}f_\sigma(\varphi) + \mathbb{Z}f_\sigma(\psi) + \mathbb{Z}f_\sigma(\rho) = f_\sigma(\mathcal{O}_k)$ and $[f_\sigma(\mathbb{Z}[A_4]x) : f_\sigma(\mathcal{O}_k)] = 4$. Comparing this with Theorem 4.1, we have the expected result.

Let \mathcal{M} be the maximal order described in Section 2.

Lemma 5.4. We have $f(\mathcal{M}x) = \mathcal{R}(\chi_\sigma)^{-1} \times \mathcal{R}(\chi_\tau)^{-1} \times \mathcal{R}(\chi_\sigma)^{-1}$.

Proof. First consider $f_\sigma(\mathcal{M}x)$. It is generated by $f_\sigma(\mathbb{Z}[A_4]x)$ and the images by f_σ of $\frac{1}{12}(\sum_{g \in A_4} g)y$, $\frac{1}{3}(\sum_{h \in H} h)y$ and $\left(\frac{1+i}{2} \right) y, \left(\frac{1+i}{2} \right) y, \left(\frac{1+i}{2} \right) y$ with $y \in \mathbb{Z}[A_4]x$.

The properties of the maps f_σ give $f_\sigma(\mathcal{M}x) = f_\sigma(\mathbb{Z}[A_4]x)\mathcal{R}(\chi_\sigma)^{-1}$. As for $f(\mathcal{M}x)$, the properties of the maps f_σ show that $f(\mathcal{M}x)$ is equal to $f((\frac{1+i}{2})\mathbb{Z}[A_4]x) + f((\frac{1+i}{2})\mathbb{Z}[A_4]x) + f((\frac{1+i}{2})\mathbb{Z}[A_4]x)$. The orthogonality relations imply that $f(\mathcal{M}x)$ is equal to $\mathcal{R}(\chi_\sigma)^{-1} \times \mathcal{R}(\chi_\tau)^{-1} \times \mathcal{R}(\chi_\sigma)^{-1}$, following the construction of x.

Theorem 5.5. We have $f(\mathbb{Z}[A_4]x) = f(\mathcal{O}_N)$.

Proof. One knows that

$$\mathcal{R}(\chi_\sigma)^{-1} \times \mathcal{R}(\chi_\tau)^{-1} \times \mathcal{R}(\chi_\sigma)^{-1} = f(\mathcal{M}x) \supset f(\mathcal{O}_N) \supset f(\mathbb{Z}[A_4]x).$$
The properties of \(f \) concerning idempotents show that \(f(M_+): f(\mathbb{Z}[A_4]|x|) = [M_+|\mathbb{Z} : \Lambda] = 2^6 \). By Theorem 4.3 this is equal to \([\frak{R}(\chi_\sigma)^{-1} \times \frak{R}(\chi_\tau)^{-1} \times \frak{R}(\chi_\sigma^+)^{-1} : f(\mathcal{O}_N)]\). This proves the assertion.

The image of \(x \) in \(\mathcal{O}_N/\mathcal{O}_k \) gives a basis of this \(\Lambda \)-module. The construction of the normal integral basis of \(\mathcal{O}_N \) is obtained using the fiber product \([2.1]\).

6. A numerical example

The computations have been performed with the system PARI \([8]\). We give an example with \(h_k \neq 1 \) to avoid the simplifications due to \(\frak{R}(\chi) \) being principal. The smallest conductor for which there exists a cubic tame extension of \(\mathbb{Q} \) with ring of integers not principal is 91. There are two such fields (the construction can be done with the algorithm of \([2]\)) we choose \(k \) to be the one where 11 is split. It is generated by a root of \(X^3 - X^2 - 30X - 27 \). The roots \(\{\gamma, \nu(\gamma), \nu^2(\gamma)\} \) of this polynomial give a normal integral basis of \(\mathcal{O}_k \). Another basis is given by \(\{1, \gamma, (\gamma^2 - \gamma)/3\} \).

Computing norms of elements with small coefficients in this basis shows that \(3 + \gamma - \gamma^2 \) has norm \(27^2 = 729 \) and minimal polynomial \(X^3 + 51X^2 + 594X - 729 \).

The construction of Section 2 gives the irreducible quartic polynomial \(X^4 + 102X^2 + 216X + 225 \). This polynomial generates a field with discriminant \(3^27^213^2 \). Its Galois closure is an extension of \(k \) with conductor 3. Among the polynomials generating the same field polynomial in Pari we choose \(P = X^4 - X^3 + 7X^2 + 9X + 24 \). Let \(y \) be a root of \(P \). The set \(\{1, y, \frac{1}{2}(y^2 + y), \frac{1}{4}(y^3 - y)\} \) is a basis of the ring of integers \(\mathcal{O}_K \). With polroots we get approximations of its roots and construct Lagrange resolvents for each character of \(H \). We choose for \(\theta_0 \) the root such that the square of the Lagrange resolvent has minimal polynomial \(X^3 + 53X^2 - 1005X - 9801 \).

From approximations of \(\langle \theta_0, \chi_\nu \rangle^2 \), we get \(\langle \theta_0, \chi_\nu \rangle^2 = -15 - 8\gamma \). The factorization of \(\langle \theta_0, \chi_\nu \rangle^2 \) in prime ideals is \((11, -5 + \gamma)(3, -1 + \gamma + (\gamma^2 - \gamma)/3)(3, (\gamma^2 - \gamma)/3) \).

We deduce that \(\frak{R}(\chi_\nu) \) is the product

\[\frak{R}(\chi_\nu)(3, -1 + \gamma + (\gamma^2 - \gamma)/3)(11, -5 + \gamma). \]

The ideal \(\frak{R}(\chi_\nu)^{-1} \) admits the \(\mathbb{Z} \)-basis \(\{1, \gamma, \frac{\gamma}{3} + \frac{20}{11} \gamma + \frac{1}{11} \gamma^2, -\frac{\gamma}{3} - \frac{20}{11} \gamma - \frac{4}{11} \gamma^2\} \). We can write \(\{f_\sigma(\varphi), f_\sigma(\psi), f_\sigma(\rho)\} \) relative to \(\{\gamma, \nu(\gamma), \nu^2(\gamma)\} : \{\gamma + \nu(\gamma) + \nu^2(\gamma), \frac{\gamma}{11} + \frac{20}{11} \nu(\gamma) + \frac{4}{11} \nu^2(\gamma), -\frac{18}{11} \gamma - \frac{20}{11} \nu(\gamma) - 2\nu^2(\gamma)\} \). Then we express \(\{1, 2\gamma - 1, 2\nu^2(\gamma) - 1\} \) according to \(\{f_\sigma(\varphi), f_\sigma(\psi), f_\sigma(\rho)\} \) and get \(2\gamma - 1 = 19f_\sigma(\varphi) - 3f_\sigma(\psi) + 8f_\sigma(\rho) \), \(2\nu^2(\gamma) - 1 = -f_\sigma(\varphi) - 3f_\sigma(\psi) - 3f_\sigma(\rho) \). When reduced mod 4, the matrix of these vectors is the image of \(\begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \) in \(\text{SL}_3(\mathbb{Z}) \). We change \(\{1, \varphi, \psi, \rho\} \) in \(\mathcal{O}_K \) to \(\{1, \varphi_1 = \varphi, \psi_1 = \psi - \varphi, \rho_1 = \rho + \psi - \varphi\} \).

We now have a new basis of \(f_\sigma(\mathcal{O}_K) \) satisfying the expected congruences mod 4.

We can construct \(x \in N \) with formula \([13]\) and \(a = \gamma \). The minimal polynomial of \(x \) over \(k \) is \(X^4 - \gamma X^3 - (3\nu(\gamma) - \nu^2(\gamma))X^2 + (20\gamma + 18\nu(\gamma) + 18\nu^2(\gamma))X + 100\gamma + 120\nu(\gamma) + 88\nu^2(\gamma) \), where \(x \) is an integer with trace over \(k \) equal to \(\gamma \). The fiber product \([2.1]\) shows that it gives a normal integral basis for \(\mathcal{O}_N \).

The element \(x \) is a root of \(X^{12} - X^{11} - 32X^{10} + 91X^9 + 656X^8 - 800X^7 - 5417X^6 + 3122X^5 + 56308X^4 + 133224X^3 + 157584X^2 + 98784X + 28224 \). It is possible to compute all the conjugates of \(x \), and the action of the Galois group on them. We can certify our assertion by computing the discriminant of the lattice.
generated by the conjugates of x. A text file `conduc91*3.txt` giving the instructions for gp is available at http://www.math.unicaen.fr/~cougnard/preprint/. Other examples are also available in `conduc7*13.txt`, which constructs a normal integral basis for N/\mathbb{Q} with conductor 13 over the cubic field of conductor 7 and in `conduc163*1.txt` for the Hilbert class field of the cubic field with conductor 163.

References

LMNO, UMR 6139 CNRS, UNIVERSITÉ DE CAEN, F 14032 CAEN CEDEX, FRANCE

E-mail address: cougnard@math.unicaen.fr

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use