Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Normal integral bases for $A_4$ extensions of the rationals


Author: Jean Cougnard
Journal: Math. Comp. 75 (2006), 485-496
MSC (2000): Primary 11R04, 11Y40; Secondary 11R33
DOI: https://doi.org/10.1090/S0025-5718-05-01779-5
Published electronically: September 1, 2005
MathSciNet review: 2176411
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an algorithm for constructing normal integral bases of tame Galois extensions of the rationals with group $A_4$. Using earlier works we can do the same until degree $15$.


References [Enhancements On Off] (What's this?)

  • 1. E. ARTIN. Questions de base minimale dans la théorie des nombres algébriques, Colloque du C.N.R.S. Algèbre et Théorie des Nombres, Paris (1949) pp. 19-20. MR 0042450 (13,113i)
  • 2. A. CHÂTELET. Arithmétique des corps abéliens du troisième degré, Ann. Sci. E.N.S. 63 (1946), 121-160. MR 0020598 (8:568a)
  • 3. J. COUGNARD. Anneau d'entiers stablement libre sur $\mathbb{Z} [H_8\times C_2]$, Journal de Théorie des Nombres de Bordeaux 10 (1998), 163-201. MR 1827291 (2002a:11124)
  • 4. J. COUGNARD. Construction de base normale pour les extensions de $\mathbb{Q} $ à groupe $D_4$, Journal de Théorie des Nombres de Bordeaux 12 (2000), 399-409.MR 1823192 (2002d:11128)
  • 5. J. COUGNARD. and J. QUEYRUT. Construction de bases normales pour les extensions galoisiennes absolues à groupe de Galois quaternionien d'ordre $12$, Journal de Théorie des Nombres de Bordeaux 14 fas. 1 (2002), 87-102.MR 1925992 (2003k:11173)
  • 6. C.W. CURTIS and I. REINER. Methods of representation theory, with applications to finite groups and orders Vol. II, John Wiley and Sons (1987).MR 0892316 (88f:20002)
  • 7. J. MARTINET. Sur l'arithmétique d'une extension galoisienne à groupe de Galois diédral d'ordre $2p,$ Ann. Inst. Fourier 19 (1969), 1-80. MR 0262210 (41:6820)
  • 8. C. BATUT, K. BELABAS, D. BERNARDI, H. COHEN, and M. OLIVIER. User's Guide to Pari-GP, version 2.02.12 (1999).
  • 9. J.-J. PAYAN. Critère de décomposition d'une extension de Kummer sur un sous-corps du corps de base, Ann. Sci. de l'E.N.S. 4e série 1 (1964), 445-458. MR 0237472 (38:5754)
  • 10. D.S. RIM. Modules over finite groups Ann. Math. (2) 69 (1959), 700-712. MR 0104721 (21:3474)
  • 11. I. REINER and S. ULLOM. Remarks on class groups of integral group rings, Symp. Math. Inst. Nazionale Alta Math. (Rome) 13 (1974), 501-506.MR 0367043 (51:3285)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R04, 11Y40, 11R33

Retrieve articles in all journals with MSC (2000): 11R04, 11Y40, 11R33


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-05-01779-5
Keywords: Number theory, algorithm
Received by editor(s): March 28, 2004
Received by editor(s) in revised form: October 28, 2004
Published electronically: September 1, 2005
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society