Linear law for the logarithms of the Riemann periods at simple critical zeta zeros

Authors:
Kevin A. Broughan and A. Ross Barnett

Journal:
Math. Comp. **75** (2006), 891-902

MSC (2000):
Primary 11M06, 11M26, 11S40

DOI:
https://doi.org/10.1090/S0025-5718-05-01803-X

Published electronically:
November 30, 2005

MathSciNet review:
2196998

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Each simple zero of the Riemann zeta function on the critical line with is a center for the flow of the Riemann xi function with an associated period . It is shown that, as ,

**1.**Berry, M.V. and Keating, J.P.*The Riemann zeros and eigenvalue asympototics*. SIAM Review**41**(1999), 236-266. MR**1684543 (2000f:11107)****2.**Borwein, P.*An efficient algorithm for the Riemann zeta function*, Constructive, experimental and nonlinear analysis (Limoges, 1999), CMS Conf. Proc.**27**(2000), 29-34. MR**1777614 (2001f:11143)****3.**Broughan, K. A.*Holomorphic flows on simply connected subsets have no limit cycles.*Meccanica**38**(2003), 699-709. MR**2028269 (2004m:37092)****4.**Broughan, K. A. and Barnett, A. R.*Holomphic flow of the Riemann zeta function*. Math. Comp.**73**(2004), 987-1004. MR**2031420 (2004j:11092)****5.**Broughan, K. A.*Holomorphic flow of Riemann's function*. Nonlinearity**18**(2005), 1269-1294. MR**2134894****6.**Broughan, K.A.*Phase portraits of the Riemann xi function zeros.*`http://www.math.waikato.ac.nz/kab`**7.**Conrey, J.B.*The Riemann Hypothesis*. Notices AMS**50**(2003), 341-353. MR**1954010 (2003j:11094)****8.**Edwards, T.M.*Riemann's zeta function*. Dover, New York, 1974.MR**1854455 (2002g:11129)****9.**Fujii, A.*On the difference between r consecutive ordinates of the Riemann Zeta function*, Proc. Japan Acad.**51**(1975), 741-743. MR**0389781 (52:10612)****10.**Godfrey, P.*An efficient algorithm for the Riemann zeta function*,`http://www.mathworks.com/support/ftp`zeta.m, etan.m (2000)**11.**Gonek, S.M.*The second moment of the reciprocal of the Riemann zeta function and its derivative*, lecture at the Mathematical Sciences Research Institute, Berkeley (June 1999).**12.**Hughes, C.P., Keating, J.P. and O'Connell, N.*Random matrix theory and the derivative of the Riemann zeta function*, Proceedings of the Royal Society: A**456**(2000), 2611-2627. MR**1799857 (2002e:11117)****13.**Levinson, N. and Montgomery, H. L.*Zeros of the derivatives of the Riemann zeta function*. Acta Math.**133**(1974), 49-65.MR**0417074 (54:5135)****14.**Montgomery, H. L.*The Pair correlation of zeros of the zeta function*.*Analytic Number Theory,*Proceedings of the Symposia in Pure Mathematics**24**(1973), 181-193. MR**0337821 (49:2590)****15.**Odlyzko, A. M.*Correspondence about the origins of the Hilbert-Polya conjecture.*`http://www.dtc.umn.edu/oldyzko/polya/`**16.**Oldyzko, A. M.*On the distribution of spacings between zeros of the zeta function.*Math. Comp.**48**(1987), 273-308. MR**0866115 (88d:11082)****17.**Titchmarsh, E.C. as revised by Heath-Brown, D.R.*The theory of the Riemann Zeta-function*. Oxford, Second Ed., 1986. MR**0882550 (88c:11049)**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11M06,
11M26,
11S40

Retrieve articles in all journals with MSC (2000): 11M06, 11M26, 11S40

Additional Information

**Kevin A. Broughan**

Affiliation:
Department of Mathematics, University of Waikato, Hamilton, New Zealand

Email:
kab@waikato.ac.nz

**A. Ross Barnett**

Affiliation:
Department of Mathematics, University of Waikato, Hamilton, New Zealand

Email:
arbus@math.waikato.ac.nz

DOI:
https://doi.org/10.1090/S0025-5718-05-01803-X

Keywords:
Riemann zeta function,
xi function,
zeta zeros,
periods,
critical line,
Hilbert--Polya conjecture

Received by editor(s):
December 13, 2004

Received by editor(s) in revised form:
March 17, 2005

Published electronically:
November 30, 2005

Article copyright:
© Copyright 2005
American Mathematical Society