Linear law for the logarithms of the Riemann periods at simple critical zeta zeros

Authors:
Kevin A. Broughan and A. Ross Barnett

Journal:
Math. Comp. **75** (2006), 891-902

MSC (2000):
Primary 11M06, 11M26, 11S40

DOI:
https://doi.org/10.1090/S0025-5718-05-01803-X

Published electronically:
November 30, 2005

MathSciNet review:
2196998

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Each simple zero of the Riemann zeta function on the critical line with is a center for the flow of the Riemann xi function with an associated period . It is shown that, as ,

**1.**M. V. Berry and J. P. Keating,*The Riemann zeros and eigenvalue asymptotics*, SIAM Rev.**41**(1999), no. 2, 236–266. MR**1684543**, https://doi.org/10.1137/S0036144598347497**2.**P. Borwein,*An efficient algorithm for the Riemann zeta function*, Constructive, experimental, and nonlinear analysis (Limoges, 1999) CRC Math. Model. Ser., vol. 27, CRC, Boca Raton, FL, 2000, pp. 29–34. MR**1777614****3.**Kevin A. Broughan,*Holomorphic flows on simply connected regions have no limit cycles*, Meccanica**38**(2003), no. 6, 699–709. Dynamical systems: theory and applications (Łódź, 2001). MR**2028269**, https://doi.org/10.1023/A:1025821123532**4.**Kevin A. Broughan and A. Ross Barnett,*The holomorphic flow of the Riemann zeta function*, Math. Comp.**73**(2004), no. 246, 987–1004. MR**2031420**, https://doi.org/10.1090/S0025-5718-03-01529-1**5.**Kevin A. Broughan,*The holomorphic flow of Riemann’s function 𝜉(𝑧)*, Nonlinearity**18**(2005), no. 3, 1269–1294. MR**2134894**, https://doi.org/10.1088/0951-7715/18/3/017**6.**Broughan, K.A.*Phase portraits of the Riemann xi function zeros.*`http://www.math.waikato.ac.nz/kab`**7.**J. Brian Conrey,*The Riemann hypothesis*, Notices Amer. Math. Soc.**50**(2003), no. 3, 341–353. MR**1954010****8.**H. M. Edwards,*Riemann’s zeta function*, Dover Publications, Inc., Mineola, NY, 2001. Reprint of the 1974 original [Academic Press, New York; MR0466039 (57 #5922)]. MR**1854455****9.**Akio Fujii,*On the difference between 𝑟 consecutive ordinates of the zeros of the Riemann zeta function*, Proc. Japan Acad.**51**(1975), no. 10, 741–743. MR**0389781****10.**Godfrey, P.*An efficient algorithm for the Riemann zeta function*,`http://www.mathworks.com/support/ftp`zeta.m, etan.m (2000)**11.**Gonek, S.M.*The second moment of the reciprocal of the Riemann zeta function and its derivative*, lecture at the Mathematical Sciences Research Institute, Berkeley (June 1999).**12.**C. P. Hughes, J. P. Keating, and Neil O’Connell,*Random matrix theory and the derivative of the Riemann zeta function*, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.**456**(2000), no. 2003, 2611–2627. MR**1799857**, https://doi.org/10.1098/rspa.2000.0628**13.**Norman Levinson and Hugh L. Montgomery,*Zeros of the derivatives of the Riemann zeta-function*, Acta Math.**133**(1974), 49–65. MR**0417074**, https://doi.org/10.1007/BF02392141**14.**H. L. Montgomery,*The pair correlation of zeros of the zeta function*, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193. MR**0337821****15.**Odlyzko, A. M.*Correspondence about the origins of the Hilbert-Polya conjecture.*`http://www.dtc.umn.edu/oldyzko/polya/`**16.**A. M. Odlyzko,*On the distribution of spacings between zeros of the zeta function*, Math. Comp.**48**(1987), no. 177, 273–308. MR**866115**, https://doi.org/10.1090/S0025-5718-1987-0866115-0**17.**E. C. Titchmarsh,*The theory of the Riemann zeta-function*, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR**882550**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11M06,
11M26,
11S40

Retrieve articles in all journals with MSC (2000): 11M06, 11M26, 11S40

Additional Information

**Kevin A. Broughan**

Affiliation:
Department of Mathematics, University of Waikato, Hamilton, New Zealand

Email:
kab@waikato.ac.nz

**A. Ross Barnett**

Affiliation:
Department of Mathematics, University of Waikato, Hamilton, New Zealand

Email:
arbus@math.waikato.ac.nz

DOI:
https://doi.org/10.1090/S0025-5718-05-01803-X

Keywords:
Riemann zeta function,
xi function,
zeta zeros,
periods,
critical line,
Hilbert--Polya conjecture

Received by editor(s):
December 13, 2004

Received by editor(s) in revised form:
March 17, 2005

Published electronically:
November 30, 2005

Article copyright:
© Copyright 2005
American Mathematical Society