NEW IRRATIONALITY MEASURES FOR q-LOGARITHMS

TAPANI MATALA-AHO, KEIJO VÄÄNÄNEN, AND WADIM ZUDILIN

Abstract. The three main methods used in diophantine analysis of q-series are combined to obtain new upper bounds for irrationality measures of the values of the q-logarithm function

$$\ln_q(1 - z) = \sum_{\nu=1}^{\infty} \frac{z^\nu q^\nu}{1 - q^\nu}, \quad |z| \leq 1,$$

when $p = 1/q \in \mathbb{Z} \setminus \{0, \pm 1\}$ and $z \in \mathbb{Q}$.

1. Introduction

The main purpose of this article is to improve the earlier irrationality measures of the values of the q-logarithm function

$$\ln_q(1 - z) = \sum_{\nu=1}^{\infty} \frac{z^\nu q^\nu}{1 - q^\nu}, \quad |z| \leq 1.$$

In order to improve the earlier results we shall combine the following three major methods used in diophantine analysis of q-series:

1. a general hypergeometric construction of rational approximations to the values of q-logarithms vs. the q-arithmetic approach ([Z1]);
2. a continuous iteration procedure for additional optimization of analytic estimates ([Bo], [MV]);
3. introducing the cyclotomic polynomials for sharpening least common multiples of the constructed linear forms in the case when z is a root of unity ([BV], [As], [MP]).

Also, some standard analytic tools (i.e., from [Ha]) for deducing irrationality measures will be required. We underline that in the corresponding arithmetic study of the values of the ordinary logarithm (cf. [Ru] for log 2 and [Ha] for other logarithms) only feature (1) is mainly applied, but in particular feature (3) has no ordinary analogues. Thus the present q-problems invoke new attractions in arithmetic questions.

We present the bounds for irrationality measures by means of certain estimates for irrationality exponents. Recall that the irrationality exponent of a real irrational
number γ is defined by the relation

$$\mu = \mu(\gamma) = \inf\{c \in \mathbb{R} : \text{the inequality } |\gamma - a/b| \leq |b|^{-c} \text{ has}
\text{only finitely many solutions in } a, b \in \mathbb{Z}\}.$$

Our main results include the case of general rational z satisfying $|z| \leq 1$ as well as the case $z = -1$ of $\ln_q(2)$. Another special case, $z = 1$ in [1], of the q-harmonic series, is considered in [22]. Our present methods do not allow us to sharpen the result in [22], where the arithmetic group structure approach (specific for $z = 1$) is used.

Theorem 1. Let $z \in \mathbb{Q}$ be such that $0 < |z| \leq 1$. Then the irrationality exponent of $\ln_q(1 - z)$ satisfies the estimate

$$\mu(\ln_q(1 - z)) \leq 3.76338419 \cdots,$$

where $q = p^{-1}$ and $p \in \mathbb{Z} \setminus \{0, \pm 1\}$.

Theorem 2. The irrationality exponent of $\ln_q(2)$ satisfies the estimate

$$\mu(\ln_q(2)) \leq 2.93832530 \cdots,$$

where $q = p^{-1}$ and $p \in \mathbb{Z} \setminus \{0, \pm 1\}$.

The estimate in Theorem 1 improves corresponding results of [BV], [MV]; the estimate in Theorem 2 sharpens results in [As], [Z1].

One important part in the proof of Theorem 2 is the precise knowledge of the least common multiple $D_n(x, z)$ of the polynomials $x - z, x^2 - z, \ldots, x^n - z$ at $z = -1$. This is a special case of a general algebraic result on $D_n(x, \omega)$ with a root of unity ω. The proof of this result, the following Theorem 3, seems to be an interesting application of cyclotomic polynomials.

Theorem 3. Let ω denote a primitive r-th root of unity for some $r \geq 2$. Then in the polynomial ring $\mathbb{Z}[\omega][x]$ the following estimate is valid:

$$\deg_x D_n(x, \omega) = \frac{3n^2}{\pi^2} \prod_{p|r} p^2 - 1 \sum_{l}^* \frac{1}{l^2} + O(n \log^2 n) \quad \text{as } n \to \infty,$$

where \sum_l^* stands for summation over integers l in the interval $1 \leq l \leq r$ and coprime with r.

To the end of Section 3, the integer p stands for $1/q$. We recall some standard q-notation:

$$(a; q)_n := \prod_{\nu=1}^{n} (1 - aq^{\nu-1}),$$

$$[n]_q! := \frac{(q; q)_n}{(1 - q)^n}, \quad \left[\begin{array}{c} n \\ k \end{array} \right]_q := \frac{[n]_q!}{[k]_q! \cdot [n - k]_q!} = \frac{(q; q)_n}{(q; q)_k \cdot (q; q)_{n-k}},$$

where $k = 0, 1, \ldots, n$ and $n = 0, 1, 2, \ldots$.

2. Hypergeometric construction

Let n_0, n_1, n_2, and m be positive integers satisfying $n_1 \geq n_0$, $n_2 \geq n_0$. The additional condition $n_2 - n_0 \leq m \leq n_2$ will be required to further simplify the explanation (the choices $m < n_2 - n_0$ and $m > n_2$ do not correspond to nice approximations to the q-logarithm). First, consider the rational function

$$\bar{R}_q(T) = \frac{\prod_{k=1}^{n_0} (1 - q^k T)}{\prod_{k=1}^{n_0} (1 - q^k)} \cdot \frac{\prod_{k=1}^{n_2} (1 - q^{k+n_1+1} T)}{\prod_{k=0}^{n_2} (1 - q^{k+n_1+1} T)} \cdot T^{m_2-n_0} \cdot \frac{(q T; q)_{n_0}}{(q; q)_{n_0}} \cdot \frac{(q; q)_{n_2}}{(q^{n_1+1}; q)_{n_2+1}} \cdot T^{m_2-n_0},$$

which is of order $O(T^{-1})$ as $T \to \infty$. This may be decomposed into the sum of partial fractions:

$$\bar{R}_q(T) = \sum_{k=0}^{n_2} \frac{A_k(q)}{1 - q^{k+n_1+1} T},$$

where the standard procedure of determining coefficients gives us

$$A_k(q) = (-1)^{n_0} q^{n_0(n_0+1)/2 - n_0(k+n_1+1)} \left[k + n_1 \atop n_0 \right] \cdot \frac{p_{n_2}}{k} \cdot q^{-(n_2-n_0)(k+n_1+1)} \cdot \left[k + n_1 \atop n_0 \right] \cdot \frac{p_n}{k} \cdot q^{-(n_2-n_0)(k+n_1+1)}$$

for $k = 0, 1, \ldots, n_2$. Setting $R_q(T) = \bar{R}_q(T) \cdot T^{m_2+1}$, where $m_0 = m - n_2 + n_0$, we introduce the quantity

$$I_q(z) = z^{n_1+1} \sum_{t=0}^{\infty} z^t R_q(T) \bigg|_{T=q^t}.$$

Since $R_q(T)$ has zeros at the points $T = q^{-1}, q^{-2}, \ldots, q^{-n_0}$, after reordering of the summation we may write

$$I_q(z) = \sum_{k=0}^{n_2} A_k(q) q^{-(k+n_1+1)(m_0+1)} z^{-k} \sum_{l=-n_0}^{\infty} \frac{z^l q^{(l+k+n_1+1)(m_0+1)}}{1 - q^{l+k+n_1+1}}$$

for $k = 0, 1, \ldots, n_2$. Setting $R_q(T) = \bar{R}_q(T) \cdot T^{m_2+1}$, where $m_0 = m - n_2 + n_0$, we introduce the quantity

$$I_q(z) = z^{n_1+1} \sum_{t=0}^{\infty} z^t R_q(T) \bigg|_{T=q^t}.$$

Since $R_q(T)$ has zeros at the points $T = q^{-1}, q^{-2}, \ldots, q^{-n_0}$, after reordering of the summation we may write

$$I_q(z) = \sum_{k=0}^{n_2} A_k(q) q^{-(k+n_1+1)(m_0+1)} z^{-k} \sum_{l=-n_0}^{\infty} \frac{z^l q^{(l+k+n_1+1)(m_0+1)}}{1 - q^{l+k+n_1+1}}$$

for $k = 0, 1, \ldots, n_2$. Setting $R_q(T) = \bar{R}_q(T) \cdot T^{m_2+1}$, where $m_0 = m - n_2 + n_0$, we introduce the quantity

$$I_q(z) = z^{n_1+1} \sum_{t=0}^{\infty} z^t R_q(T) \bigg|_{T=q^t}.$$

The last inner sum may be computed as follows:

$$\sum_{l=k+n_1-n_0+1}^{\infty} \frac{z^l q^{l(m_0+1)}}{1 - q^l} = \sum_{l=k+n_1-n_0+1}^{\infty} \frac{z^l q^l}{1 - q^l} - \sum_{l=k+n_1-n_0+1}^{\infty} \frac{z^l q^{l(m_0+1)}}{1 - q^l};$$

writing the first sum on the right-hand side as

$$\sum_{l=1}^{\infty} \frac{z^l q^l}{1 - q^l} - \sum_{l=1}^{k+n_1-n_0} \frac{z^l q^l}{1 - q^l} = \ln_q(1 - z) - \sum_{l=1}^{k+n_1-n_0} \frac{z^l q^l}{1 - q^l};$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
and the second sum as
\[\sum_{l=k+n_1-n_0+1}^{m_0} z^l \sum_{j=1}^{m_0} q_j^l = \sum_{j=1}^{m_0} (q_j z)^{k+n_1-n_0+1} \frac{1 - q_j^2 z}{1 - q_j^2},\]
we finally obtain
\[I_q(z) = A(p, z) \ln_q(1 - z) + A'(p, z) + A''(p, z),\]
where
\[A(p, z) = \sum_{k=0}^{n_2} A_k(q)p^{(k+n_1+1)(m_0+1)} z^{-k},\]
\[A'(p, z) = \sum_{k=0}^{n_2} A_k(q)p^{(k+n_1+1)(m_0+1)} z^{-k} \sum_{l=1}^{m_0} \frac{z^l}{p^l},\]
\[A''(p, z) = \sum_{k=0}^{n_2} A_k(q)p^{(k+n_1+1)(m_0+1)} z^{n_1-n_0+1} \sum_{j=1}^{m_0} \frac{1}{p^j - z},\]

\[(\text{the last step uses Lemma 3 from [ZI]).}\]

Since \(m \leq n_2\), we have
\[M_1 = \frac{n_0(n_0+1)}{2} + (m+1)(n_1+1) + \min_{0 \leq k \leq n_2} \left\{-n_2k + (m+1)k + \frac{k(k-1)}{2} \right\},\]
\[= \frac{n_0(n_0+1)}{2} + (m+1)(n_1+1) - \frac{(n_2-m)(n_2-m-1)}{2} ;\]
set also
\[M_2 = \frac{n_0(n_0+1)}{2} + (n_0+1)(m+1) + (n_2+1)(n_1-n_0),\]
and by \(D_n(p, z) \) denote the least common multiple of the polynomials \(p - z, p^2 - z, \ldots, p^n - z \). Then the above formulae yield the inclusions

\[
p^{-M_1}z^{n_2} \cdot A(p, z) \in \mathbb{Z}[p, z], \quad p^{-M_1}z^{n_2}D_{n_1+n_2-n_0}(p,1) \cdot A'(p, z) \in \mathbb{Z}[p, z],
\]

\[
p^{-M_2}D_{n_0}(p, z) \cdot A''(p, z) \in \mathbb{Z}[p, z]
\]

(by noticing that \((p^{m-j} p^{-1})_{n_2-n_0+k} = 0\) if \(m - j - n_2 + n_0 - k \leq 0\); hence

\[
p^{-M} \tilde{D}_{n_1+n_2-n_0,m_0}(p, z) \cdot I_q(z) \in \mathbb{Z}[p, z] \ln_q(1 - z) + \mathbb{Z}[p, z],
\]

where \(M = \min\{M_1, M_2\} = M_1 \) and \(\tilde{D}_{n,m}(p, z) \) denotes a common multiple of the polynomials \(D_n(p) = D_n(p,1) \) and \(D_m(p, z) \). It is known \([\text{Ge}]\) that the polynomial \(D_n(p) \) is the product of the first \(n \) cyclotomic polynomials

\[
\Phi_l(p) = \prod_{k=1}^{l} (p - e^{2\pi i k/l}) \in \mathbb{Z}[p], \quad l = 1, 2, 3, \ldots,
\]

so that the usual choice of \(\tilde{D}_{n,m}(p, z) \) is as follows:

\[
\tilde{D}_{n,m}(p, z) = D_n(p) \cdot \prod_{j=1}^{m} (p^j - z).
\]

However, if \(z \) is a root of unity, there is a better choice instead; we discuss this type of question in Sections 3 and 4 below.

Finally, we would like to mention that the quantity \(I_q(z) \) is in fact the value of the Heine series,

\[
I_q(z) = z^{n_1+1} \cdot \left(\frac{q; q}{q} \right)_{n_1} \cdot \frac{q; q_{n_2}}{q; q_{n_1+n_2+1}} \cdot \phi_1 \left(\frac{q^{n_0+1}}{q^{n_1+n_2+2}} \mid q, q^{m+1} z \right)
\]

(see \([\text{GR}]\)), and that the construction in \([\text{MV}]\) corresponds to the following choice of the parameters: \(n_0 = n_2 = n, n_1 = n + 1, \) and \(m = K - 1 \).

3. Analytic and arithmetic valuation

Writing

\[
A(p, z) = (-1)^{n_0} p^{-n_0(n_0+1)/2 + (n_0+m+1)(n_1+1)} \times \sum_{k=0}^{n_2} (-1)^k p^{(n_0+m+1)k - k(k+1)/2} \left[\frac{k + n_1}{n_0} \right] \left[\frac{n_2}{k} \right] \left[\frac{n_2}{q} \right] z^{-k}
\]

and using

\[
\max_{0 \leq k \leq n_2} \left\{ (n_0 + m + 1)k - \frac{k(k + 1)}{2} \right\} = (n_0 + m + 1)n_2 - \frac{n_2(n_2 + 1)}{2}
\]

(since \(n_0 + m + 1 > n_2 \)), we conclude that

\[
|A(p, z)| = |p|^{-n_0(n_0+1)/2 - n_2(n_2+1)/2 + (n_0+m+1)(n_1+n_2+1)+O(n_0+n_1+n_2+m)},
\]

where the constant in \(O \) depends on \(z \) only. Similarly,

\[
|I_q(z)| = |p|^{O(n_0+n_1+n_2+m)}.
\]
The general asymmetry of our construction yields the existence of a common divisor \(\Pi(p) = \Pi_{n_0,n_1,n_2}(p) \in \mathbb{Z}[p] \) of the polynomials
\[
\begin{bmatrix}
 k + n_1 \\
 n_0
\end{bmatrix}_p \begin{bmatrix}
 n_2 \\
 k
\end{bmatrix}_p, \quad k = 0, 1, \ldots, n_2,
\]
and hence of the coefficients \(A(p,z), A'(p,z), A''(p,z) \) after multiplication by \(p^{-M} \cdot \tilde{D}_{n_1+n_2-n_0,m_0}(p,z) \) in \(\mathbb{Z}[p] \). Namely, using representations
\[
\begin{bmatrix}
 k + n_1 \\
 n_0
\end{bmatrix}_p \begin{bmatrix}
 n_2 \\
 k
\end{bmatrix}_p = \frac{[n_1]_p! [n_2]_p!}{[n_0]_p! [n_1+n_2-n_0]_p!} \begin{bmatrix}
 k + n_1 \\
 k
\end{bmatrix}_p \begin{bmatrix}
 n_1 + n_2 - n_0 \\
 n_2 - k
\end{bmatrix}_p,
\]
and the knowledge that \(p \)-binomial coefficients are polynomials from \(\mathbb{Z}[p] \) having only cyclotomic polynomials as irreducible factors, we may take
\[
\Pi(p) = \prod_{l=1}^{n_1+n_2-n_0} \Phi_l(p)^{\varpi(l)},
\]
where
\[
\varpi(l) = \max \left\{ 0, \left\lfloor \frac{n_1}{l} \right\rfloor + \left\lfloor \frac{n_2}{l} \right\rfloor - \left\lfloor \frac{n_0}{l} \right\rfloor - \left\lfloor \frac{n_1+n_2-n_0}{l} \right\rfloor \right\}
\]
and \(\lfloor \cdot \rfloor \) denotes the integer part of a number (see [Z1], the proof of Lemma 5).

These arguments allow us to sharpen the inclusions (3) as follows:
\[
p^{-M} \tilde{D}_{n_1+n_2-n_0,m_0}(p,z) \cdot \Pi_{n_0,n_1,n_2}(p)^{-1} \cdot I_q(z) \in \mathbb{Z}[p,z] [\ln_q(1-z) + \mathbb{Z}[p,z]].
\]

Finally, set
\[
n_0 = \alpha_0 n, \quad n_1 = \alpha_1 n, \quad n_2 = \alpha_2 n, \quad m = \lfloor \alpha n \rfloor,
\]
where the parameter \(n \) tends to \(\infty \). Then
\[
\lim_{n \to \infty} \frac{\log |A(p,z)|}{n^2 \log |p|} = C_1, \quad \lim_{n \to \infty} \frac{\log |I_q(z)|}{n^2 \log |p|} = 0
\]
by (5), (7), and
\[
\lim_{n \to \infty} \frac{\log |p^{-M} \tilde{D}_{n_1+n_2-n_0,m_0}(p,z)^{-1} \cdot \Pi_{n_0,n_1,n_2}(p)|}{n^2 \log |p|} = C_0
\]
with the choice (5), where
\[
C_1 = C_1(\alpha) = -\frac{\alpha_0^2 + \alpha_2^2}{2} + (\alpha_0 + \alpha)(\alpha_1 + \alpha_2),
\]
\[
C_0 = C_0(\alpha) = \frac{\alpha_0^2}{2} + \alpha_1 \alpha - \frac{(\alpha_2 - \alpha)^2}{2}
\]
\[
\quad - \frac{3}{\pi^2} \left((\alpha_1 + \alpha_2 - \alpha_0)^2 - \int_0^1 \varpi_0(x) d(-\psi'(x)) \right) - \frac{(\alpha - \alpha_2 + \alpha_0)^2}{2}
\]
and
\[
\varpi_0(x) = \max \{ 0, \lfloor \alpha_1 x \rfloor + \lfloor \alpha_2 x \rfloor - \lfloor \alpha_0 x \rfloor - \lfloor (\alpha_1 + \alpha_2 - \alpha_0) x \rfloor \}.
\]
Then \(\mu(\ln q(1-z)) \leq C_1(\alpha)/C_0(\alpha)\) provided that \(\alpha_2 - \alpha_0 \leq \alpha \leq \alpha_2\) and \(C_0(\alpha) > 0\). It is important that the parameters \(\alpha_0, \alpha_1, \alpha_2\) should be positive integers to ensure validity of the above formula for \(C_0(\alpha)\) (namely, its integration part due to [ZL], Lemma 1). Thus after making a suitable choice for these three parameters we can minimize the quantity \(C_1(\alpha)/C_0(\alpha)\) with respect to the remaining parameter \(\alpha\), which may take any (even irrational) value in the interval \(\alpha_2 - \alpha_0 \leq \alpha \leq \alpha_2\). This idea comes from [MV], and, as in that work, there is no difficulty in minimizing \(C_1(\alpha)/C_0(\alpha)\) since \(C_1(\alpha)\) depends linearly and \(C_0(\alpha)\) quadratically on the parameter \(\alpha\).

Proof of Theorem 1. Taking \(\alpha_0 = 6, \alpha_1 = \alpha_2 = 7\), so that \(\varpi_0(x) = 1\) for \(x \in [0,1)\) lying in the following set:

\[
[\frac{1}{7}, \frac{6}{7}) \cup [\frac{7}{7}, \frac{12}{7}) \cup [\frac{13}{7}, \frac{18}{7}) \cup [\frac{19}{7}, \frac{24}{7}) \cup [\frac{25}{7}, \frac{30}{7}),
\]

and then \(\alpha = 5.63997199\ldots\), we arrive at the estimate

\[
\mu(\ln q(1-z)) \leq 3.76338419\ldots
\]

of the theorem. \(\square\)

4. **Cyclotomic Background**

We will agree from the beginning to deal with the cyclotomic polynomials \(\Phi_l(x)\) and least common multiples \(D_n(x,z)\) and \(\hat{D}_{n,m}(x,z)\) as polynomials in the variable \(x\), and to keep the substitution \(x = p \in \mathbb{Z} \setminus \{0, \pm1\}\) for final arithmetic results. As follows from definition [4], \(\deg \Phi_l(x) = \varphi(l)\), Euler’s totient function. Therefore, the degree of the polynomial \(D_n(x) = D_n(x, 1) = \prod_{l=1}^n \Phi_l(x)\) may be computed by application of Mertens’ formula

\[
\deg D_n(x) = \sum_{1 \leq l \leq n} \varphi(l) = \frac{3}{\pi^2} n^2 + O(n \log n) \quad \text{as } n \to \infty;
\]

hence

\[
\lim_{n \to \infty} \frac{\log |D_n(p)|}{n^2 \log |p|} = \frac{3}{\pi^2}.
\]

This is the formula used in computing the right-hand side of (8). We will also require the following summation formulae for Euler’s totient function:

\[
\sum_{1 \leq j \leq n} \varphi(2j) = \frac{4}{\pi^2} n^2 + O(n \log n), \quad \sum_{0 \leq j \leq n} \varphi(2j + 1) = \frac{8}{\pi^2} n^2 + O(n \log n)
\]

as \(n \to \infty\) (for \(n\) real and not necessarily integral); see also the general formula [12] below.

Lemma 1. In the polynomial ring \(\mathbb{Z}[x]\) the following estimate is valid:

\[
\deg D_n(x, -1) = \frac{4}{\pi^2} n^2 + O(n \log n) \quad \text{as } n \to \infty.
\]

First proof. Since \(x^k - 1 = \prod_{l | k} \Phi_l(x)\), we have

\[
x^k + 1 = \frac{x^{2k} - 1}{x^k - 1} = \frac{\prod_{l | 2k} \Phi_l(x)}{\prod_{l | 2k} \Phi_l(x)} = \prod_{l | 2k} \Phi_l(x) = \prod_{l | k \text{ is odd}} \Phi_2(x), \quad k = 1, \ldots, n.
\]
Therefore, $x^k + 1$ divides $\prod_{l=1}^{n} \Phi_{2l}(x)$ for $k = 1, \ldots, n$ and, clearly, $\Phi_{2l}(x)$ divides $x^l + 1$ for $l = 1, \ldots, n$. Thus $D_n(x, -1) = \prod_{l=1}^{n} \Phi_{2l}(x)$ and application of the first formula in (11) leads to the desired result. \hfill \Box

Second proof. This proof follows the ideas of proving Lemma 2 in [MP]; we indicate it to make clear the ideas of proving Theorem 3 below.

For each $n > 0$ (not necessarily integral!), denote by $L_n(x)$ the least common multiple of the polynomials $x^k + 1$, where k runs over positive odd integers in the interval $1 \leq k \leq n$. Since $x^k + 1 = -((-x)^k - 1) = -\prod_{|k|} \Phi_{l}(x)$ for k odd, we obtain

$$L_n(x) = \prod_{1 \leq l \leq n \atop l \text{ is odd}} \Phi_{l}(-x) = \prod_{j=0}^{\lfloor n/2 \rfloor} \Phi_{2j+1}(-x);$$

hence

(13) \quad \deg L_n(x) = \frac{2}{\pi^2} n^2 + O(n \log n) \quad \text{as } n \to \infty,

by the second formula in (11). Clearly, $L_{n/2}(x^2)$ gives the least common multiple of the polynomials $x^k + 1$, where k runs over positive even integers in the interval $1 \leq k \leq n$ not divisible by 4; then $L_{n/4}(x^4)$ gives the least common multiple of the polynomials $x^k + 1$, where $k \equiv 4 \pmod{8}$ runs in the interval $1 \leq k \leq n$, and so on. If exponents of 2 in the prime decompositions of the numbers k and j are different, then polynomials $x^k + 1$ and $x^j + 1$ have no common complex roots; hence they are coprime over $\mathbb{C}[x]$ and as a consequence over $\mathbb{Z}[x]$ as well. Therefore, we arrive at the formula

$$D_n(x, -1) = L_n(x) L_{n/2}(x^2) L_{n/4}(x^4) L_{n/8}(x^8) \cdots,$$

where the product on the right contains only a finite number $O(\log n)$ of factors, and the (almost desired) estimate for the degree of $D_n(x, -1)$,

$$\deg D_n(x, -1) = \frac{4}{\pi^2} n^2 + O(n \log^2 n) \quad \text{as } n \to \infty,$$

follows from an accurate substitution of formula (13). \hfill \Box

Corollary. If $n/2 \leq m \leq n$, then a common multiple $\hat{D}_{n,m}(x, -1)$ (over $\mathbb{Z}[x]$) of the polynomials $D_n(x)$ and $D_m(x, -1)$ may be taken in such a way that

$$\deg \hat{D}_{n,m}(x, -1) = \frac{1}{\pi^2} (2n^2 + 4m^2) + O(n \log n) \quad \text{as } n \to \infty.$$

Proof. The polynomials $x^k + 1$ for $1 \leq k \leq n/2$ divide both $D_n(x)$ and $D_m(x, -1)$. Therefore we may take

$$\hat{D}_{n,m}(x, -1) = \frac{D_n(x) D_m(x, -1)}{D_{n/2}(x, -1)},$$

and estimates (10), (12) give the desired result. \hfill \Box

Remark. The above choice of $\hat{D}_{n,m}(x, -1)$ sharpens the choice in [Z1], Lemma 8.
Proof of Theorem 2. Using the above corollary of Lemma 1 we may replace the constant C_0 in (9) by

$$C'_0 = C'_0(\alpha) = \frac{\alpha_0^2}{2} + \alpha_1 \alpha - \frac{(\alpha_2 - \alpha_0)^2}{2} - \frac{1}{\pi^2} \left(2(\alpha_1 + \alpha_2 - \alpha_0)^2 + 4(\alpha - \alpha_2 + \alpha_0)^2 \right)$$

where $1 \leq \alpha \leq 2$, and $\pi(\ln(2)) \leq C_1/C'_0 \leq 2.93832530 \cdots$ obtained by using the values $\alpha_0 = 4, \alpha_1 = \alpha_2 = 5, \alpha = 4.09112737 \cdots$. In this case, $\omega_0(x) = 1$ for $x \in [0,1)$ belonging to the following set:

$$\left[\frac{1}{5}, \frac{1}{4} \right) \cup \left[\frac{2}{5}, \frac{1}{2} \right) \cup \left[\frac{3}{5}, \frac{2}{3} \right) \cup \left[\frac{4}{5}, \frac{3}{4} \right).$$

This proves Theorem 2.

5. Common multiples involving cyclotomic polynomials

The number p will be used to denote a prime. We will require the asymptotic formula

$$\sum_{j=0}^{n} \varphi(rj + b) = \frac{3r}{\pi^2} n^2 \prod_{p|r} p^2 + O(n \log n) \quad \text{as } n \to \infty,$$

where $1 \leq b \leq r$ and $(b, r) = 1$ (see [Ba] and [MP]).

Proof of Theorem 3. For each $n > 0$ (not necessarily integral!) and any integer b satisfying $1 \leq b \leq r$ and $(b, r) = 1$, denote by $L_{n,b}(x)$ the least common multiple of the polynomials $x^k - \omega$, where k runs over integers in the interval $1 \leq k \leq n$ satisfying $k \equiv b \pmod{r}$. The polynomials $x^k - \omega$ and $x^j - \omega$, where k and j are integers coprime with r and $k \neq j \pmod{r}$, have no common roots; hence these polynomials are coprime over $\mathbb{C}[x]$. This, in particular, yields that the $\varphi(r)$ polynomials $L_{n,b}(x)$, $1 \leq b \leq r$, $(b, r) = 1$, are pairwise coprime over $\mathbb{C}[x]$ and over $\mathbb{Z}[\omega][x] \subset \mathbb{C}[x]$ as well; hence

$$L_n(x) = \prod_{\substack{1 \leq k \leq r \\ (b, r) = 1}} L_{n,b}(x)$$

is the least common multiple of the polynomials $x^k - \omega$, where k runs over integers satisfying $1 \leq k \leq n$ coprime with r. Having this common multiple and concluding as in the second proof of Lemma 1, we obtain

$$D_n(x, \omega) = \prod_{s_1=0}^{\infty} \cdots \prod_{s_m=0}^{\infty} L_{n,(p_1^{s_1} \cdots p_m^{s_m})}(x^{p_1^{s_1} \cdots p_m^{s_m}}),$$

where p_1, \ldots, p_m are all distinct prime divisors of the number r. Note that, in spite of infinite products in (16), only a finite number $[O(\log n)]$ of the factors differ from 1.

In order to compute the polynomials $L_{n,b}(x)$, we start by noting the formula

$$x^{r_j + b} - \omega = \omega \left((\omega^a x)^{r_j + b} - 1\right) = \omega \prod_{d|r_j + b} \Phi_d(\omega^a x),$$
where \(ab \equiv -1 \pmod{r} \). Therefore, assigning the numbers \(b_l \) in the interval \(1 \leq b_l \leq r \) to each \(l \), \(1 \leq l \leq r \), \((l, r) = 1 \), by the rule \(lb_l \equiv b \pmod{r} \) (as in [MP]) we obtain

\[
\prod_{1 \leq j \leq r} \Phi_{rj+b_l}(\omega^a x) \left| L_{n,b}(x) \right| \prod_{1 \leq j \leq r} \Phi_{rj+b_l}(\omega^a x)
\]

(where “\(\lfloor \)" means “divides”, as before); hence

\[
deg_x L_{n,b} = \sum_l \left(\sum_{j=0}^{[n/(rj)]} \phi(rj+b_l) + O(n \log n) \right)
\]

\[
= \sum_l \left(\frac{3r}{\pi^2} \left(\frac{n}{rl} \right)^2 \prod_{p|r} \frac{p^2}{p^2-1} + O(n \log n) \right)
\]

\[
= \frac{3n^2}{\pi^2r} \prod_{p|r} \frac{p^2}{p^2-1} \sum_l \frac{1}{l^2} + O(n \log n)
\]

as \(n \to \infty \), by (14). Using (15) we obtain

\[
deg_x L_n = \frac{3n^2\phi(r)}{\pi^2r} \prod_{p|r} \frac{p^2}{p^2-1} \sum_l \frac{1}{l^2} + O(n \log n)
\]

as \(n \to \infty \).

Finally, computing the degree of the polynomial \(D_n(x, \omega) \) in (16) with the help of the relation

\[
\sum_{s_1=0}^\infty \cdots \sum_{s_n=0}^\infty \frac{1}{p_1^{s_1} \cdots p_n^{s_n}} = \left(1 - \frac{1}{p_1} \right)^{-1} \cdots \left(1 - \frac{1}{p_n} \right)^{-1} = \frac{r}{\phi(r)}
\]

gives the desired result (2). This proves Theorem 3. \(\square \)

Acknowledgments

The third-named author thanks the staff of the Mathematical Institute of the University of Cologne, where his part of the work was done, for the hospitality and the warm working atmosphere; he also expresses his special gratitude to Peter Bundschuh for productive discussions and for his valuable advice in both mathematics and daily life.

References

Department of Mathematical Sciences, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland

E-mail address: tma@sun3.oulu.fi

Department of Mathematical Sciences, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland

E-mail address: kvaanane@sun3.oulu.fi

Department of Mechanics and Mathematics, Moscow Lomonosov State University, Vorobiov Gory, GSP-2, 119992 Moscow, Russia

E-mail address: wadim@ips.ras.ru