Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Error reduction and convergence for an adaptive mixed finite element method

Authors: Carsten Carstensen and R. H. W. Hoppe
Journal: Math. Comp. 75 (2006), 1033-1042
MSC (2000): Primary 65N30, 65N50
Published electronically: March 13, 2006
MathSciNet review: 2219017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An adaptive mixed finite element method (AMFEM) is designed to guarantee an error reduction, also known as saturation property: after each refinement step, the error for the fine mesh is strictly smaller than the error for the coarse mesh up to oscillation terms. This error reduction property is established here for the Raviart-Thomas finite element method with a reduction factor $ \rho<1$ uniformly for the $ L^2$ norm of the flux errors. Our result allows for linear convergence of a proper adaptive mixed finite element algorithm with respect to the number of refinement levels. The adaptive algorithm surprisingly does not require any particular mesh design, unlike the conforming finite element method. The new arguments are a discrete local efficiency and a quasi-orthogonality estimate. The proof does not rely on duality or on regularity.

References [Enhancements On Off] (What's this?)

  • 1. Ainsworth, M. and Oden, J.T. (2000). A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester. MR 1885308 (2003b:65001)
  • 2. Alonso, A. (1996). Error estimators for a mixed method. Numer. Math., 74, 4, 385-395. MR 1414415 (97g:65212)
  • 3. Babuska, I. and Strouboulis, T. (2001). The Finite Element Method and its Reliability. Clarendon Press, Oxford. MR 1857191 (2002k:65001)
  • 4. Bänsch, E., Morin, P., and Nochetto, R.H. (2002). An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition. SIAM J. Numer. Anal., 40, 4, 1207-1229. MR 1951892 (2004e:65127)
  • 5. Bahriawati, C. and Carstensen, C. Three Matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control. Newton Institute Preprint NI03069-CPD available at http://www.newton
  • 6. Bangerth, W. and Rannacher, R. (2003). Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH-Zürich. Birkhäuser, Basel. MR 1960405 (2004b:65002)
  • 7. Binev, P., Dahmen, W., and DeVore, R. (2004). Adaptive Finite Element Methods with Convergence Rates. Numer. Math., 97, 2, 219-268. MR 2050077 (2005d:65222)
  • 8. Brezzi, F. and Fortin, M. (1991). Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, Springer-Verlag, New York, 15, x+350.MR 1115205 (92d:65187)
  • 9. Carstensen, C. (1997). A posteriori error estimate for the mixed finite element method. Math. Comp., 66, 218, 465-476. MR 1408371 (98a:65162)
  • 10. Carstensen, C. and Bartels, S. (2002). Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming and Mixed FEM. Math. Comp., 71, 239, 945-969. MR 1898741 (2003e:65212)
  • 11. Dörfler, W. (1996). A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal., 33, 3, 1106-1124. MR 1393904 (97e:65139)
  • 12. Eriksson, K., Estep, D., Hansbo, P., and Johnson, C. (1995). Computational Differential Equations. Cambridge University Press, Cambridge. MR 1414897 (97m:65006)
  • 13. Hoppe, R.H.W. and Wohlmuth, B. (1997). Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. SIAM J. Numer. Anal., 34, 1658-1681.MR 1461801 (98e:65095)
  • 14. Marini, L.D. (1985). An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal., 22, 3, 493-496. MR 0787572 (86g:65214)
  • 15. Morin, P., Nochetto, R.H., and Siebert, K.G. (2000). Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal., 38, 2, 466-488. MR 1770058 (2001g:65157)
  • 16. Morin, P., Nochetto, R.H., and Siebert, K.G. (2003). Local problems on stars: a posteriori error estimators, convergence, and performance. Math. Comp., 72, 243, 1067-1097. MR 1972728 (2004d:65129)
  • 17. Verfürth, R. (1996). A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York, Stuttgart.
  • 18. Wohlmuth, B. and Hoppe, R.H.W. (1999). A comparison of a posteriori error estimators for mixed finite element discretizations. Math. Comp., 82, 253-279.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N50

Retrieve articles in all journals with MSC (2000): 65N30, 65N50

Additional Information

Carsten Carstensen
Affiliation: Department of Mathematics, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany

R. H. W. Hoppe
Affiliation: Institute of Mathematics, Universität Augsburg, D-86159 Augsburg, Germany; and Department of Mathematics, University of Houston, Houston, Texas 77204-3008

Received by editor(s): April 11, 2004
Published electronically: March 13, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society