Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing the arithmetic genus of Hilbert modular fourfolds


Authors: H. G. Grundman and L. E. Lippincott
Journal: Math. Comp. 75 (2006), 1553-1560
MSC (2000): Primary 11F41, 14E08; Secondary 14J10, 14J35
DOI: https://doi.org/10.1090/S0025-5718-06-01842-4
Published electronically: March 21, 2006
MathSciNet review: 2219045
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Hilbert modular fourfold determined by the totally real quartic number field $ k$ is a desingularization of a natural compactification of the quotient space $ \Gamma_k \backslash {\mathcal H}^4$, where $ \Gamma_k=$PSL$ _2({\mathcal O}_k)$ acts on $ {\mathcal H}^4$ by fractional linear transformations via the four embeddings of $ k$ into $ \bf R$. The arithmetic genus, equal to one plus the dimension of the space of Hilbert modular cusp forms of weight $ (2,2,2,2)$, is a birational invariant useful in the classification of these varieties. In this work, we describe an algorithm allowing for the automated computation of the arithmetic genus and give sample results.


References [Enhancements On Off] (What's this?)

  • 1. C. Batut, K. Belabas, D. Benardi, H. Cohen, and M. Olivier. User's Guide to PARI-GP, 1998. $ \langle$ftp://megrez.math.u-bordeaux.fr/pub/pari$ \rangle$.
  • 2. J. Buchmann, F. Diaz y Diaz, D. Ford, P. Létard, M. Olivier, M. Pohst, and A. Schwarz. Tables of number fields of low degree, $ \langle$ftp://megrez.math.u-bordeaux.fr/pub/ numberfields/$ \rangle$.
  • 3. M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, and K. Wildanger. Kant v4. J. Symbolic Comp., 24:267-283, 1997. $ \langle$http://www.math.TU-Berlin.DE/$ \Tilde{~}$kant/kash.html$ \rangle$. MR 1484479 (99g:11150)
  • 4. E. Freitag. Hilbert Modular Forms. Springer-Verlag, Berlin, 1980.MR 1050763 (91c:11025)
  • 5. H. G. Grundman. Hilbert modular varieties over Galois quartic fields. J. Number Theory, 63 (1997), 47-58. MR 1438648 (98c:11040)
  • 6. H. G. Grundman and L. E. Lippincott. Hilbert modular fourfolds of arithmetic genus one. In High Primes and Misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun., 41, pp. 217-226. Amer, Math. Soc., 2004. MR 2076248 (2005d:11065)
  • 7. F. Hirzebruch. Hilbert modular surfaces. Enseign. Math., II. Ser., 19 (1973), 183-281. MR 0393045 (52:13856)
  • 8. F. Hirzebruch. Topological Methods in Algebraic Geometry. Springer-Verlag, Berlin, 3rd edition, 1978. MR 1335917 (96c:57002)
  • 9. F. Hirzebruch and A. Van de Ven. Hilbert modular surfaces and the classification of algebraic surfaces. Invent. Math., 23 (1974), 1-29.MR 0364262 (51:517)
  • 10. F. Hirzebruch and D. Zagier. Classification of Hilbert modular surfaces. In Complex Analysis and Algebraic Geometry, pp. 43-77. University Press and Iwanami Shoten, Cambridge, 1977. MR 0480356 (58:524)
  • 11. C. L. Siegel. Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Göttingen II. Math. Phys. Kl., pages 87-102, 1969.MR 0252349 (40:5570)
  • 12. G. van de Geer. Hilbert Modular Surfaces. Springer-Verlag, Berlin, 1988.MR 0930101 (89c:11073)
  • 13. D. Zagier. On the values at negative integers of the zeta-function of a real quadratic field. Enseign. Math, 22 (1976), 55-95. MR 0406957 (53:10742)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11F41, 14E08, 14J10, 14J35

Retrieve articles in all journals with MSC (2000): 11F41, 14E08, 14J10, 14J35


Additional Information

H. G. Grundman
Affiliation: Bryn Mawr College, 101 N. Merion Ave., Bryn Mawr, Pennsylvania 19010
Email: grundman@brynmawr.edu

L. E. Lippincott
Affiliation: Bryn Mawr College, 101 N. Merion Ave., Bryn Mawr, Pennsylvania 19010
Email: llippinc@brynmawr.edu

DOI: https://doi.org/10.1090/S0025-5718-06-01842-4
Received by editor(s): April 23, 2004
Received by editor(s) in revised form: May 10, 2005
Published electronically: March 21, 2006
Additional Notes: The first author wishes to acknowledge the support of the Faculty Research Fund of Bryn Mawr College.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society