Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Integer points on the curve $ Y^{2}=X^{3}\pm p^{k}X$


Author: Konstantinos A. Draziotis
Journal: Math. Comp. 75 (2006), 1493-1505
MSC (2000): Primary 11D25, 11G05
DOI: https://doi.org/10.1090/S0025-5718-06-01852-7
Published electronically: April 6, 2006
MathSciNet review: 2219040
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We completely solve diophantine equations of the form $ Y^{2}=X^{3}\pm p^{k}X, $ where $ k$ is a positive integer, using a reduction to some quartic elliptic equations, which can be solved with well known methods.


References [Enhancements On Off] (What's this?)

  • 1. Bennett, Michael A. On the representation of unity by binary cubic forms. Trans. Amer. Math. Soc. 353 (2001), no. 4, 1507-1534 MR 1806730 (2002i:11031)
  • 2. Chen, Jian Hua; Voutier, Paul, Complete solution of the Diophantine equation $ X^{2}+1=dY^{4}$ and a related family of quartic Thue equations. J. Number Theory 62 (1997), no. 1, 71-99. MR 1430002 (97m:11039)
  • 3. Cohn J.H.E., The Diophantine equation $ y^{2}=Dx^{4}+1$ III. Math. Scand. 42 (1978), 180 - 188. MR 0512268 (80a:10031)
  • 4. -, The Diophantine equation $ x^{4}+1=Dy^{2}$. Math. Comp. 66 (1997), no. 219, 1347-1351. MR 1415800 (98e:11032)
  • 5. Coombes, K.R.; Grant D.R., On heterogeneous spaces, J.London. Math.Soc (2) 40 (1989), no.3, 385-397. MR 1053609 (91d:11069)
  • 6. David, Sinnou, Minorations de formes linéaires de logarithmes elliptiques. (French) [Lower bounds for linear forms in elliptic algorithms] Mém. Soc. Math. France (N.S.) No. 62 (1995), iv+143 pp. MR 1385175 (98f:11078)
  • 7. Gebel, J.; Pethö, A.; Zimmer, H. G., Computing integral points on elliptic curves. Acta Arith. 68 (1994), no. 2, 171-192. MR 1305199 (95i:11020)
  • 8. Genocchi, Sur l'impossibilite de quelques egalites doubles, C. R. Acad.Sci. Paris, 78 (1874), 423-436.
  • 9. Grytczuk, Aleksander; Luca, Florian; Wójtowicz, Marek, The negative Pell equation and Pythagorean triples. Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 6, 91-94. MR 1769976 (2001c:11033)
  • 10. Lang, Serge, Elliptic curves: Diophantine analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 231.Springer-Verlag, Berlin-New York, 1978. xi+261 pp. ISBN: 3-540-08489-4.MR 0518817 (81b:10009)
  • 11. Ljunggren, W., Zur Theorie der Gleichung $ x^{2}+1=Dy^{4}.$ Avh. Norsk. Vid. Akad. Oslo 1-27 (1942).MR 0016375 (8:6f)
  • 12. -, Einige Eigenschften der Einheiten reel Quadratischer und rein-bi-quadratischer Zahlkorper. Skr. Norske Vid. Akad. Oslo I, v.1936, no.12.
  • 13. Luca, F.; Walsh, P. G., A generalization of a theorem of Cohn on the equation $ x\sp 3-Ny\sp 2=\pm1$. Rocky Mountain J. Math. 31 (2001), no. 2, 503-509. MR 1840950 (2002g:11027)
  • 14. Mordell, L.J., Diophantine Equations. Pure and Applied Mathematics, Vol. 30 Academic Press, London-New York 1969 xi+312 pp. MR 0249355 (40:2600)
  • 15. -, The Diophantine equation $ Y^{2}=DX^{4}+1$. J. London Math. Soc. 39 1964 161-164. MR 0162761 (29:65)
  • 16. Poulakis, Dimitrios, A simple method for solving the Diophantine equation $ Y^{2}=X^{4}+aX^{3}+bX^{2}+cX+d$. Elem. Math. 54 (1999), no. 1, 32-36. MR 1669371 (2000a:11040)
  • 17. Poulakis, D.; Walsh, G., A note on the Diophantine equation $ x^{2}-dy^{4}=1$ with prime discriminant, Comptes Rendues Math. Sci. Canada 27 (2005), no. 2, 54-57. MR 2142959
  • 18. Rose H.E., A course in number theory, second edition, Oxford science publications, 1994. ISBN 0-19-852376-9. MR 1352868 (96g:11001)
  • 19. Samuel, Pierre, Résultats élémentaires sur certaines équations diophantiennes. (French) [Elementary results for some Diophantine equations] J. Théor. Nombres Bordeaux 14 (2002), no. 2, 629-646. MR 2040698 (2004m:11041)
  • 20. Schinzel, A.; Sierpinski, W. Sur certaines hypothèses concernant les nombres premiers. (French) Acta Arith. 4 (1958), 185-208; erratum 5 1958 259. MR 0106202 (21:4936)
  • 21. Sierpinski, W., Elementary Theory of Numbers. Polish Scientific Publishers, Warszawa (1987). MR 0930670 (89f:11003)
  • 22. Silverman, J. H., The Arithmetic of Elliptic Curves, Springer-Verlag,1986. MR 0817210 (87g:11070)
  • 23. Smart, N. P., S-integral points on elliptic curves. Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 391-399. MR 1291748 (95g:11050)
  • 24. Stroeker, R. J.; Tzanakis, N., Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 67 (1994), no. 2, 177-196. MR 1291875 (95m:11056)
  • 25. Stroeker, Roel J.; Tzanakis, Nikos, On the elliptic logarithm method for elliptic Diophantine equations: reflections and an improvement. Experiment. Math. 8 (1999), no. 2, 135-149. MR 1700575 (2000d:11043)
  • 26. Togbe, A.; Voutier, P. M.; Walsh, P. G., Solving a family of Thue equations with an application to the equation $ x^{2}-dy^{4}=1$, Acta Arith. 120 (2005), 39-58. MR 2189717
  • 27. Tzanakis N.; B. M. M. de Weger, On the practical solution of the Thue equations, J. Number Theory 31(2) (1989), 99-132. MR 0987566 (90c:11018)
  • 28. Vojta, Paul, Diophantine approximations and value distribution theory. Lecture Notes in Mathematics, 1239. Springer-Verlag, Berlin, 1987. x+132 pp. ISBN: 3-540-17551-2. MR 0883451 (91k:11049)
  • 29. Walsh, G., Diophantine equations of the form $ aX^{4}-bY^{2}=\pm 1.\mathrm{ }$Algebraic number theory and Diophantine analysis, Proceedings of the International Conference in Graz 1998, Walter de Gruyter, Berlin 2000, pp.531-554. MR 1770484 (2001h:11034)
  • 30. Walsh, G., A note on a theorem of Ljunggren and the Diophantine equations $ x^2 - kxy^2 + y^4= 1, 4.$ Archiv der Mathematik 73 (1999), no.2, 119-125. MR 1703679 (2000i:11048)
  • 31. Zagier, Don, Large integral points on elliptic curves. Math. Comp. 48 (1987), no. 177, 425-436.MR 0866125 (87k:11062)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11D25, 11G05

Retrieve articles in all journals with MSC (2000): 11D25, 11G05


Additional Information

Konstantinos A. Draziotis
Affiliation: 42 G. Passalidi St., Thessaloniki 54453, Greece
Email: drazioti@gmail.com

DOI: https://doi.org/10.1090/S0025-5718-06-01852-7
Keywords: Elliptic curve, 2-torsion point, unramified morphism, Pell equation.
Received by editor(s): December 2, 2003
Received by editor(s) in revised form: July 29, 2005
Published electronically: April 6, 2006
Additional Notes: The research of this author was supported by the Hellenic State Scholarships Foundation-I.K.Y
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society