LOWER BOUNDS FOR THE CONDITION NUMBER OF A REAL CONFLUENT VANDERMONDE MATRIX

REN-CANG LI

Abstract. Lower bounds on the condition number $\kappa_p(V_c)$ of a real confluent Vandermonde matrix V_c are established in terms of the dimension n, or n and the largest absolute value among all nodes that define the confluent Vandermonde matrix and the interval that contains the nodes. In particular, it is proved that for any modest k_{max} (the largest multiplicity of distinct nodes), $\kappa_p(V_c)$ behaves no smaller than $O(n((1+\sqrt{2})^n))$, or than $O(n((1+\sqrt{2})^{2n})$ if all nodes are nonnegative. It is not clear whether those bounds are asymptotically sharp for modest k_{max}.

1. Introduction

Given n numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ called nodes, the associated Vandermonde matrix is defined as

$$V \overset{\text{def}}{=} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \cdots & \alpha_n^{n-1} \end{pmatrix}.$$

It, for example, arises from polynomial interpolation and others. V is invertible if all nodes α_i are distinct, i.e., $\alpha_i \neq \alpha_j$ for $i \neq j$, but it becomes singular whenever $\alpha_i = \alpha_j$ for some $i \neq j$. A generalization of V for nodes not all of which are distinct is the so-called confluent Vandermonde matrices, e.g.,

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ \alpha_1 & 1 & 0 & \alpha_4 & \alpha_5 & 1 \\ \alpha_1^2 & 2\alpha_1 & 2 & \alpha_4^2 & \alpha_5^2 & 2\alpha_5 \\ \alpha_1^3 & 3\alpha_1^2 & 6\alpha_1 & \alpha_4^3 & \alpha_5^3 & 3\alpha_5^2 \\ \alpha_1^4 & 4\alpha_1^3 & 12\alpha_1^2 & \alpha_4^4 & \alpha_5^4 & 4\alpha_5^3 \\ \alpha_1^5 & 5\alpha_1^4 & 20\alpha_1^3 & 20\alpha_1^2 & \alpha_4^5 & 5\alpha_5^4 \end{pmatrix},$$

where $\alpha_1 = \alpha_2 = \alpha_3$ and $\alpha_5 = \alpha_6$. The second, third, and sixth columns are obtained by “differentiating” the previous column. Confluent Vandermonde matrices

Received by the editor October 20, 2004 and, in revised form, May 23, 2005.
2000 Mathematics Subject Classification. Primary 15A12, 65F35.
Key words and phrases. Optimal condition number, Vandermonde matrix, confluent Vandermonde matrix, Chebyshev polynomials.
This work was supported in part by the National Science Foundation CAREER award under Grant No. CCR-9875201 and by the National Science Foundation under Grant No. DMS-0510664.

©2006 American Mathematical Society
arise in Hermite interpolation [1], for example. Adopting the formulation in [8], we define the confluent Vandermonde matrix V_c as follows. First

\begin{equation}
\{\alpha_j\}_{j=1}^{n} \text{ are ordered so that equal nodes are contiguous, i.e., } \alpha_i = \alpha_j \quad (i < j) \implies \alpha_i = \alpha_{i+1} = \cdots = \alpha_j.
\end{equation}

Define

\begin{equation}
V_c = (f_1(\alpha_1) \ f_2(\alpha_2) \ \cdots \ f_n(\alpha_n)),
\end{equation}

where the vector function $f_j(t)$ is defined recursively by

\begin{equation}
f_j(t) = \begin{cases}
(1 \ t \ \cdots \ t^{n-1})^T, & \text{if } j = 1 \text{ or } \alpha_j \neq \alpha_{j-1}, \\
\frac{d}{dt} f_{j-1}(t), & \text{otherwise},
\end{cases}
\end{equation}

where ".T" is the transpose of a vector or matrix. As far as defining V_c is concerned, α_j can be real or complex. But in this paper, we shall focus on real α_j. In what follows, α_j and V_c, as well as

\[\alpha_{\max} \overset{\text{def}}{=} \max_j |\alpha_j|, \]

are reserved for their assignments here.

(Optimal) condition numbers for real Vandermonde matrices have been systematically studied by Gautschi and his coauthor (see [7] and references therein), and more recently by Tyrtyshnikov [12], Beckermann [2], and Li [10]. In this paper, we shall establish three lower bounds on the condition number $\kappa_p(V_c) \equiv \|V_c\|_p\|V_c^{-1}\|_p$ in terms of n, or n and α_{\max} and the interval $[\alpha, \beta]$ that contains all nodes. In particular, we will show that for fixed k_{\max} (the largest multiplicity of distinct nodes), $\kappa_p(V_c)$ behaves no smaller than $\mathcal{O}_n((1 + \sqrt{2})^n)$, where notation $a_n = \mathcal{O}_n(b_n)$ means $c_1 n^{d_1} \leq a_n / b_n \leq c_2 n^{d_2}$ for some constants c_1, c_2, d_1, and d_2.

Optimally conditioned confluent Vandermonde matrices can be much worse ill-conditioned than optimally conditioned Vandermonde matrices. One extreme example would be that all nodes are equal $\alpha_1 = \cdots = \alpha_n$ for which V_c is lower triangular, and thus

\[\kappa_p(V_c) \geq (n-1)! \sim \sqrt{2\pi n^{1/2}} e^{-n} \]

by Stirling’s asymptotic formula [11, Page 18], and it becomes an equality for $\alpha_1 = \cdots = \alpha_n = 0$. While for optimally conditioned Vandermonde matrices, $\kappa_p(V)$ goes to ∞ as fast as $(1 + \sqrt{2})^n$ modulo a factor n^d for $|d| \leq 1$ [2, 10].

The rest of this paper is organized as follows. A general lower bound on $\kappa_p(V_c)$ is established in Section 2 but it is not uniform. Uniform bounds for $p = \infty$ are obtained in Section 3 for all real V_c and for V_c with nonnegative nodes. Finally we present our concluding remarks in Section 4.

2. A GENERAL LOWER BOUND

Given $1 \leq p \leq \infty$, the ℓ_p-norm of vector $u = (\mu_1 \ \mu_2 \ \cdots \ \mu_n)^T$ is defined as

\[\|u\|_p = \left(\sum_{j=1}^{n} |\mu_j|^p \right)^{1/p}, \]
and \(\|u\|_\infty = \lim_{p \to \infty} \|u\|_p = \max_j |\mu_j|\). The associated \(\ell_p\)-operator norm of the \(m \times n\) matrix \(A\) is defined as

\[
\|A\|_p = \max_{u \neq 0} \frac{\|Au\|_p}{\|u\|_p}
\]

(2.1)

It can be proved that \(\|A\|_p = \|A^T\|_{p'}\), upon noticing

\[
\|A\|_p = \max_{u \neq 0, v \neq 0} \frac{|u^T Av|}{\|u\|_p \|v\|_{p'}}
\]

where \(1/p + 1/p' = 1\) (see also [9]).

Let \([\alpha, \beta]\) be the interval in which all \(\alpha_j\) lie.

\[
T_n(t) = \cos(n \arccos t) \quad \text{for } |t| \leq 1,
\]

(2.2)

\[
\frac{1}{2} \left(t + \sqrt{t^2 - 1} \right)^n + \frac{1}{2} \left(t - \sqrt{t^2 - 1} \right)^n \quad \text{for } |t| \geq 1
\]

(2.3)

is the \(n\)th Chebyshev polynomial of the first kind. Define the \(n\)th translated Chebyshev polynomial \(T_n(x; \omega, \tau) \equiv T_n(x/\omega + \tau)\), where

\[
\omega = \frac{\beta - \alpha}{2} > 0, \quad \tau = \frac{\beta - \alpha}{\beta + \alpha}
\]

Let \(a_{jn} \equiv a_{jn}(\omega, \tau)\) be the coefficient of \(x^j\) in \(T_n(x; \omega, \tau)\), i.e.,

\[
T_n(x; \omega, \tau) = a_{nn}x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0.
\]

(2.4)

Define [10]

\[
S_{n,p}(\omega, \tau) = \left(\sum_{j=0}^{n} |a_{jn}|^p \right)^{1/p}.
\]

Now we are ready to state our main theorem for the section.

Theorem 2.1. Assume that there are \(\ell\) distinct nodes \(\alpha_j\), and let \(k_{\max}\) be the largest multiplicity of the distinct nodes. Then

\[
\kappa_p(V_\xi) \geq \min_{1 \leq k \leq k_{\max}} \left[\frac{(n-k)!}{(n-1)!} \right]^2 \omega^{k-1} \times \max\{\ell/p', \alpha_{\max}^{n-1} / n^{1/p'} \}
\]

(2.5)

Proof. Inequality (2.5) is a consequence of Lemmas [2.1] and [2.3] below. \(\square\)

For \(k_{\max} = 1\), i.e., \(\ell = n\) and \(k_1 = \cdots = k_n = 1\) (and thus \(V_\xi = V\)), (2.5) becomes one of the lower bounds for \(\kappa_p(V)\) in [10]. The right-hand side of (2.5) entails the explicit computation of \(S_{n,p}(\omega, \tau)\). It can also be estimated fairly well, too, by

\[
n^{-1/p}S_{n-1,1}(\omega, \tau) \leq S_{n-1,p}(\omega, \tau) \leq S_{n-1,1}(\omega, \tau),
\]

(2.6)

\[
[n/2]^{-1/p}S_{n-1,1}(\omega, 0) \leq S_{n-1,p}(\omega, 0) \leq S_{n-1,1}(\omega, 0),
\]

(2.7)

in connection with the explicit formulas for \(S_{n-1,1}(\omega, \tau)\) for \(\tau = 0\) or \(|\tau| \geq 1\) in [10]. Here \(|\xi|\) is the smallest integer that is larger than \(\xi\). The formulas are

\[
S_{n-1,1}(\omega, 0) = T_{n-1}(t/\omega) \sim \frac{1}{2} \left(\frac{1}{\omega} + \sqrt{1 + \frac{1}{\omega^2}} \right)^{n-1},
\]

(2.8)
where \(\ell = \sqrt{-1} \), and for \(\alpha \geq 0 \) (for which \(\tau \leq -1 \),

\[
S_{n-1,1}(\omega, \tau) = T_{n-1}(|\tau| + 1/\omega) \sim \frac{1}{2} \left[\left(\frac{1}{\omega} + |\tau| \right) + \sqrt{\left(\frac{1}{\omega} + |\tau| \right)^2 - 1} \right]^{n-1}.
\]

Lemma 2.1. Assume that there are \(\ell \) distinct nodes \(\alpha_j \). Then

\[
\|V_c\|_p \geq \max \left\{ \ell^{1/p'}, \alpha_{\text{max}}^{n-1} \right\},
\]

\[
\|V_c\|_p \geq \left(\sum_{j=1}^{n} \alpha_{\text{max}}^{(j-1)p} \right)^{1/p}.
\]

Proof. Let \(c_j \) be the \(j \)th column of the \(n \times n \) identity matrix \(I_n \) (or simply \(I \) if \(n \) is clear from the context). Use (2.10), and use \(\|V_c\|_p \geq \|V_c^T e_1\|_{p'} \) and \(\|V_c\|_p \geq \|V_c^T e_n\|_{p'} \) to get (2.10), and use \(\|V_c\|_p \geq \max_j \|V_c^T e_j\|_{p'} \) to get (2.11). \(\square \)

Lemma 2.2. For \(0 \leq k \leq n \),

\[
\left| \frac{d}{dx} T_n(x; \omega, \tau) \right| \leq \frac{n(n-1)\cdots(n-k+1)^2}{\omega^k} \text{ for } x \in [\alpha, \beta].
\]

Proof. It follows from \(T_n(x; \omega, \tau) = T_n(x/\omega + \tau) \equiv T_n(t) \) that

\[
\frac{d^k}{dx^k} T_n(x; \omega, \tau) = \frac{1}{\omega^k} T_n^{(k)}(t),
\]

where \(t \equiv t(x) = x/\omega + \tau \). It suffices to show that \(|T_n^{(k)}(t)| \leq |n(n-1)\cdots(n-k+1)|^2 \) for \(t \in [-1,1] \) since \(t(x) \) maps \(x \in [\alpha, \beta] \) to \(t \in [-1,1] \). By Markov’s inequality [5, Page 233],

\[
\max_{t \in [-1,1]} |T_n^{(k)}(t)| \leq \frac{2\max_{t \in [-1,1]} |T_n^{(k-1)}(t)|}{n(n-1)\cdots(n-k+1)} \leq \ldots \leq \frac{\max_{t \in [-1,1]} |T_n(t)|}{n(n-1)\cdots(n-k+1)} = \left(\frac{n(n-1)\cdots(n-k+1)}{\omega^k} \right)^2,
\]

as expected. \(\square \)

Lemma 2.3. Under the conditions of Theorem 2.1

\[
\|V_c^{-1}\|_p \geq \min_{1 \leq k \leq k_{\text{max}}} \left[\frac{(n-k)!}{(n-1)!} \right]^2 \omega^{k-1} \times \frac{S_{n-1,p'}(\omega, \tau)}{\frac{\alpha_{\text{max}}^{(k-1)p}}{n^{1/p'}}}.
\]

Proof. For the sake of this proof, let the \(\ell \) distinct nodes have multiplicities \(k_1, k_2, \ldots, k_{\ell} \), respectively, where \(k_1 + k_2 + \cdots + k_{\ell} = n \), and the first \(k_1 \alpha_j \)'s are equal, the next \(k_2 \alpha_j \)'s are equal, and so on. Let \(v \) be the vector of the coefficients of the translated Chebyshev polynomial \(T_{n-1}(x; \omega, \tau) \), i.e., \(v = (a_{0,n-1} a_{1,n-1} \cdots a_{n-1,n-1})^T \). Then

\[
V_c^T v = (T_{n-1}(\alpha_1; \omega, \tau) T_{n-1}(\alpha_1; \omega, \tau) \cdots T_{n-1}(\alpha_1; \omega, \tau) \cdots \cdots)^T,
\]
which yields, by Lemma 2.2 for $1 \leq p' < \infty$

\[
(2.14) \quad \|V^T_e v\|_{p'}^p \leq \sum_{j=1}^\ell \left(1^{p'} + \frac{(n-1)^2}{\omega} \right)^{p'} \\
+ \cdots + \left[\frac{(n-1)(n-2)\cdots(n-k_j+1)^2}{\omega^{k_j-1}}\right]^{p'} \\
\leq \sum_{j=1}^\ell k_j \times \left(\max_{1 \leq k \leq k_j} \left[\frac{(n-1)!}{(n-k)!} \frac{1}{\omega^{k-1}}\right]\right)^{p'} \\
\leq n \times \left(\max_{1 \leq k \leq k_{\max}} \left[\frac{(n-1)!}{(n-k)!} \frac{1}{\omega^{k-1}}\right]\right)^{p'},
\]

which gives

\[
(2.15) \quad \|V^T_e v\|_{p'} \leq n^{1/p'} \times \max_{1 \leq k \leq k_{\max}} \left[\frac{(n-1)!}{(n-k)!} \frac{1}{\omega^{k-1}}\right].
\]

This is proved so far for $1 \leq p' < \infty$, but it can be verified that (2.16) holds for $p' = \infty$, too. Therefore, we have

\[
\|V^{-T}_e\|_{p'} = \max_u \frac{\|u\|_{p'}\|V^T_e u\|_{p'}}{\|V^T_e v\|_{p'}} \geq \frac{\|v\|_{p'}}{\|V^T_e v\|_{p'}} \\
\geq \min_{1 \leq k \leq k_{\max}} \left[\frac{(n-k)!}{(n-1)!} \omega^{k-1}\right]^{1/p'} \times S_{n-1,p'}(\omega, \tau) / n^{1/p'},
\]

as was to be shown. \[\square\]

In general, we may use (2.14), instead of (2.15), in estimating $\|V^{-1}_e\|_p$. Doing so, however, will lead to a more complicated lower bound on $\kappa_p(V_e)$.

Remark 2.1. Lemma 2.3 is made possible by Lemma 2.2 which is proved with the help of Markov’s inequality. Another classical inequality for the same purpose is Bernstein’s inequality [5, Page 233], using which we can obtain the following. For $0 \leq k \leq n$, if $\alpha < a \overset{\text{def}}{=} \min_j \alpha_j < b \overset{\text{def}}{=} \max_j \alpha_j < \beta$, then

\[
(2.17) \quad \frac{d}{dx} T_n(x; \omega, \tau) \leq \frac{n(n-1)\cdots(n-k+1)}{\omega^{1 - \left(\frac{\max(\beta-b, a-\alpha)}{\omega}\right)^2}} \quad \text{for } x \in [\alpha, \beta].
\]

This inequality improves (2.12) in the numerator part but has complications in the denominator, and also it requires the interval $[\alpha, \beta]$ to be (slightly) larger than the smallest interval containing all nodes. This can be bad because larger $[\alpha, \beta]$ will weaken the effectiveness of $S_{n,p'}(\omega, \tau)$ in the later bounds on $\kappa_p(V_e)$; for example $S_{n,p'}(\omega, \tau)$ is decreasing in ω [10].

3. **Two uniform bounds**

We present two theorems here, one for any real V_e and one for V_e with nonnegative nodes. Their proofs will be given later after two lemmas. Again let $1 \leq p \leq \infty$ and $1/p + 1/p' = 1$.
Theorem 3.1. Under the conditions of Theorem 2.1, if

\[k_{\text{max}} - 1 \leq \frac{n-1}{\sqrt{2}} \left[1 - (1 + \sqrt{2})^{-2n+2} \right] \sim \frac{n-1}{\sqrt{2}}, \]

then

\[\kappa_p(V_c) \geq \left[\frac{(n-k_{\text{max}})!}{(n-1)!} \right]^2 \frac{1}{2^{k_{\text{max}}-1}} \frac{S_{n-1,1}(1,0)}{n} \sim \frac{1}{2^{k_{\text{max}}-1}} \frac{[1 + \sqrt{2}]^{n-1}}{n}. \]

Theorem 3.2. Under the conditions of Theorem 2.1, if all \(\alpha_i \geq 0 \) and

\[k_{\text{max}} - 1 \leq \frac{n-1}{\sqrt{2}} \left[1 - (1 + \sqrt{2})^{-4(n-1)} \right]^{-1} \sim \frac{n-1}{\sqrt{2}}, \]

then

\[\kappa_p(V_c) \geq \left[\frac{(n-k_{\text{max}})!}{(n-1)!} \right]^2 \frac{1}{2^{k_{\text{max}}-1}} \frac{S_{n-1,1}(1/2,1)}{n} \sim \frac{1}{2^{k_{\text{max}}-1}} \frac{[1 + \sqrt{2}]^{2(n-1)}}{n}. \]

Lemma 3.1. Let \(j \geq 0 \) and \(m \geq 1 \). \(\rho^j S_{m,1}(\rho,0) \) is decreasing in \(\rho \) for \(0 \leq \rho \leq 1 \) if

\[j \leq \frac{m}{\sqrt{2}} \left[1 - (1 + \sqrt{2})^{-2m} \right] \sim \frac{m}{\sqrt{2}}. \]

Proof. We claim that under inequality (3.3), \(\frac{d}{d\rho} \rho^j S_{m,1}(\rho,0) \leq 0 \) for \(0 \leq \rho \leq 1 \). To this end, we notice that

\[\frac{d}{d\rho} \rho^j S_{m,1}(\rho,0) = j \rho^{j-1} S_{m,1}(\rho,0) + \rho^j \frac{d}{d\rho} S_{m,1}(\rho,0). \]

Now for \(0 \leq \rho \leq 1 \) and by (2.8), we have

\[S_{m,1}(\rho,0) \leq \frac{1}{2} \left[\frac{1}{\rho} + \sqrt{1 + \frac{1}{\rho^2}} \right]^m \left[1 + \epsilon^{-2m} \right], \]

\[-\frac{d}{d\rho} S_{m,1}(\rho,0) \geq \frac{m}{2} \left[\frac{1}{\rho} + \sqrt{1 + \frac{1}{\rho^2}} \right]^{m-1} \left[1 - \delta^{-2m} \right] \times \left[\frac{1}{\rho^2} + \frac{1}{\rho^2 \sqrt{1 + \rho^2}} \right], \]
where $\epsilon = 1 + \sqrt{2}$ and $\delta = 0$ for even m, and $\epsilon = 0$ and $\delta = 1 + \sqrt{2}$ for odd m. Therefore, for $\rho \leq 1$,

$$\frac{d}{d\rho} \rho^j p_{m,1}(\rho, 0) = \frac{j}{m} + \rho \frac{d}{d\rho} S_{m,1}(\rho, 0) \leq \frac{j}{m} - \frac{\rho}{\rho^2} + \frac{1}{\rho^2} \frac{1 - \delta^{-2m}}{1 + \epsilon^{-2m}}$$

$$= \frac{j}{m} - \frac{1}{\sqrt{1 + \rho^2}} \frac{1 - \delta^{-2m}}{1 + \epsilon^{-2m}} \leq \frac{j}{m} - \frac{1}{\sqrt{2}} \frac{1 - (1 + \sqrt{2})^{-2m}}{1} \leq 0$$

upon using (3.3).

\(\square\)

Lemma 3.2. Let $j \geq 0$, $\gamma \geq 1$, and $m \geq 1$. For j satisfying (3.3) and $\rho > 0$,

$$\rho^j \max\{\gamma, \rho^m\} S_{m,1}(\rho, 0) \geq S_{m,1}(1, 0).$$

Proof. Let $\Phi_1 = \rho^j \times S_{m,1}(\rho, 0)$ and $\Phi_2 = \rho^j \times S_{m,1}(\rho, 0)$. Then $\max\{\Phi_1, \Phi_2\}$ is Φ_1 for $\rho \leq \gamma^{1/m}$ and Φ_2 for $\rho \geq \gamma^{1/m}$. Φ_2 is increasing in ρ for $\rho > 0$ because $\rho^m S_{m,1}(\rho, 0)$ is a polynomial in ρ with nonnegative coefficients and thus increasing in ρ for $\rho > 0$. So

$$\max\{\Phi_1, \Phi_2\} \geq \Phi_2 \geq S_{m,1}(1, 0) \quad \text{for } \rho \geq 1.$$

For $0 \leq \rho \leq 1$, Φ_1 is decreasing in ρ by Lemma 3.1 and thus

$$\max\{\Phi_1, \Phi_2\} \geq \Phi_1 \geq S_{m,1}(1, 0) \quad \text{for } \rho \leq 1.$$

This completes the proof. \(\square\)

Proof of Theorem 3.1 Setting $\gamma = \beta = \alpha_{\max}$ in (2.5), we have, upon using (2.7),

$$\kappa_p(V_c) \geq \min \left[\frac{(n-k)!}{(n-1)!} \right]^2 \frac{\alpha_{\max}^{k-1} \times \max\{\ell^{1/p}, \alpha_{\max}^{-1}\} S_{n-1,1}(\alpha_{\max}, 0)}{n^{1/p} \left[\frac{n}{2} \right]^{1/p}} \int_{1 \leq k \leq k_{\max}} \Phi,$$

where $\Phi = \alpha_{\max}^{k-1} \times \max\{\ell^{1/p}, \alpha_{\max}^{-1}\} S_{n-1,1}(\alpha_{\max}, 0)$. Apply Lemma 3.2 with $j = k - 1$, $m = n - 1$, $\gamma = \ell^{1/p}$, and $\rho = \alpha_{\max}$ to get $\Phi \geq S_{n-1,1}(1, 0)$, as needed. \(\square\)

Proof of Theorem 3.2 Setting $0 = \alpha < \beta = \alpha_{\max}$ in (2.5), we have, upon using (2.0),

$$\kappa_p(V_c) \geq \min \left[\frac{(n-k)!}{(n-1)!} \right]^2 \frac{\alpha_{\max}^{-1} \times \max\{\ell^{1/p}, \alpha_{\max}^{-1}\} S_{n-1,1}(\alpha_{\max}/2, 1)}{n^{1/p} \left[\frac{n}{2} \right]^{1/p}} \int_{1 \leq k \leq k_{\max}} \Psi,$$
where
\[\tilde{\Psi} = \alpha_{\text{max}}^{k-1} \times \max\{\ell^{1/p'}, \alpha_{\text{max}}^{n-1}\} S_{n-1,1}(\alpha_{\text{max}}/2, 1). \]
It can be verified by (2.3), (2.8), and (2.9) that
\[S_{n-1,1}(\alpha_{\text{max}}/2, 1) = S_{2(n-1),1}(\sqrt{\alpha_{\text{max}}}, 0). \]
Therefore
\[\tilde{\Psi} = (\sqrt{\alpha_{\text{max}}})^{2(k-1)} \times \max\{\ell^{1/p'}, (\sqrt{\alpha_{\text{max}}})^{2(n-1)}\} S_{2(n-1),1}(\sqrt{\alpha_{\text{max}}}, 0) \]
\[\geq S_{2(n-1),1}(1, 0), \]
on upon using Lemma 3.2 with \(j = 2(k-1), m = 2(n-1), \gamma = \ell^{1/p'}, \) and \(\rho = \sqrt{\alpha_{\text{max}}}. \)

4. CONCLUDING REMARKS

We have obtained three lower bounds on the condition number \(\kappa_p(V_c) \) of a real confluent Vandermonde matrix \(V_c \). Two of them are uniform in the sense that they depend on \(n \), the dimension of \(V_c \) only, while the other one is more general, as is the function of \(n \) and \(\alpha_{\text{max}} \) and the interval \([\alpha, \beta]\) that contains all \(\alpha_j \). These bounds grow exponentially for any fixed \(k_{\text{max}} \), much as expected. While it is not clear in general if (any of) our bounds are asymptotically optimal, in contrast to those for Vandermonde matrices by Beckermann [2] and recently by the author [10], our bounds are unlikely to be asymptotically optimal if \(k_{\text{max}} \) also grows, e.g., linearly in \(n \). This is illustrated by the extreme example \(k_{\text{max}} = n \), as we commented in Section 4.

We have focused on real confluent Vandermonde matrices here. It is conceivable that there would be much better conditioned complex confluent Vandermonde matrices or confluent Vandermonde-like matrices. This is partly an intuition one might get from that although real Vandermonde matrices are very ill-conditioned [7, 2, 10, 12], there exist very well-conditioned complex Vandermonde matrices and Vandermonde-like matrices [3, 11]. We plan to investigate this issue in future work.

ACKNOWLEDGMENT

The author wishes to thank the anonymous referee for his constructive suggestions that improved and shortened the paper considerably.

REFERENCES

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506
E-mail address: rcli@ms.uky.edu
URL: http://www.ms.uky.edu/~rcli