Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods


Authors: Gabriel N. Gatica and Francisco-Javier Sayas
Journal: Math. Comp. 75 (2006), 1675-1696
MSC (2000): Primary 65N30, 65N38, 65N12, 65N15
DOI: https://doi.org/10.1090/S0025-5718-06-01864-3
Published electronically: July 3, 2006
MathSciNet review: 2240630
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we analyze the coupling of local discontinuous Galerkin (LDG) and boundary element methods as applied to linear exterior boundary value problems in the plane. As a model problem we consider a Poisson equation in an annular polygonal domain coupled with a Laplace equation in the surrounding unbounded exterior region. The technique resembles the usual coupling of finite elements and boundary elements, but the corresponding analysis becomes quite different. In particular, in order to deal with the weak continuity of the traces at the interface boundary, we need to define a mortar-type auxiliary unknown representing an interior approximation of the normal derivative. We prove the stability of the resulting discrete scheme with respect to a mesh-dependent norm and derive a Strang-type estimate for the associated error. Finally, we apply local and global approximation properties of the subspaces involved to obtain the a priori error estimate in the energy norm.


References [Enhancements On Off] (What's this?)

  • 1. D.N. ARNOLD: Interior penalty finite element method with discontinuous elements. SIAM Journal on Numerical Analysis, vol. 19, 4, pp. 742-760 (1982). MR 0664882 (83f:65173)
  • 2. D.N. ARNOLD, F. BREZZI, B. COCKBURN AND L.D. MARINI: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, vol. 39, 5, pp. 1749-1779 (2001). MR 1885715 (2002k:65183)
  • 3. R. BECKER, P. HANSBO AND M.G. LARSON: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Computer Methods in Applied Mechanics and Engineering, vol. 192, pp. 723-733 (2003). MR 1952357 (2003k:65135)
  • 4. R. BUSTINZA, B. COCKBURN AND G.N. GATICA: An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems. Journal of Scientific Computing, vol. 22, 1, pp. 147-185 (2005). MR 2142193
  • 5. R. BUSTINZA AND G.N. GATICA: A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions. SIAM Journal on Scientific Computing, vol. 26, 1, pp. 152-177 (2004).MR 2114338 (2005k:65201)
  • 6. R. BUSTINZA AND G.N. GATICA: A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics. Journal of Computational Physics, vol. 207, 2, pp. 427-456 (2005). MR 2144625 (2006a:76069)
  • 7. C. CARSTENSEN AND E.P. STEPHAN: Adaptive coupling of boundary elements and finite elements. Mathematical Modelling and Numerical Analysis, vol. 29, pp. 779-817 (1995).MR 1364401 (97e:65134)
  • 8. P. CASTILLO, B. COCKBURN, I. PERUGIA, AND D. SCH¨OTZAU: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM Journal on Numerical Analysis, vol. 38, 5, pp. 1676-1706 (2000).MR 1813251 (2002k:65175)
  • 9. P. CIARLET: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).MR 0520174 (58:25001)
  • 10. B. COCKBURN AND C. DAWSON: Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions. In Proceedings of the 10th Conference on the Mathematics of Finite Elements and Applications, edited by J. Whiteman, Elsevier, pp. 225-238 (2000).MR 1801979 (2001j:65142)
  • 11. B. COCKBURN AND C.W. SHU: The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM Journal on Numerical Analysis, vol. 35, 6, pp. 2440-2463 (1998). MR 1655854 (99j:65163)
  • 12. B. COCKBURN AND C. DAWSON: Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems. Locally conservative numerical methods for flow in porous media. Computational Geosciences, vol. 6, 3-4, pp. 505-522 (2002). MR 1956028 (2004b:65179)
  • 13. M. COSTABEL: Boundary integral operators on Lipschitz domains: elementary results. SIAM Journal on Mathematical Analysis, vol. 19, 3, pp. 613-626 (1988).MR 0937473 (89h:35090)
  • 14. C. DAWSON AND J. PROFT: Coupling of continuous and discontinuous Galerkin methods for transport problems. Computer Methods in Applied Mechanics and Engineering, vol. 191, 29-30, pp. 3213-3231 (2002). MR 1908108 (2003d:65090)
  • 15. C. DAWSON AND J. PROFT: Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Computer Methods in Applied Mechanics and Engineering, vol. 191, 41-42, pp. 4721-4746 (2002).MR 1929628 (2003j:76074)
  • 16. C. DAWSON AND J. PROFT: Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations. Computer Methods in Applied Mechanics and Engineering, vol. 193, 3-5, pp. 289-318 (2004).MR 2031230 (2004k:65170)
  • 17. G.P. GALDI: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I: Linearised Steady Problems. Springer-Verlag, 1994.MR 1284205 (95i:35216a)
  • 18. G.N. GATICA AND N. HEUER: A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity. SIAM Journal on Numerical Analysis, vol. 38, 2, pp. 380-400 (2000). MR 1770054 (2001e:65193)
  • 19. G.N. GATICA AND G.C. HSIAO: Boundary-Field Equation Methods for a Class of Nonlinear Problems. Pitman Research Notes in Mathematics Series, vol. 331, Longman, 1995. MR 1379331 (97k:65269)
  • 20. G.N. GATICA AND F.J. SAYAS: A note on the local approximation properties of piecewise polynomials with applications to LDG methods. Complex Variables and Elliptic Equations, vol. 51, 2, pp. 109-117 (2006).
  • 21. R. HIPTMAIR: Coupling of finite elements and boundary elements in electromagnetic scattering. SIAM Journal on Numerical Analysis, vol. 41, 3, pp. 919-944 (2003). MR 2005188 (2004i:65121)
  • 22. P. HOUSTON, J. ROBSON AND E. S¨ULI: Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case. IMA J. Numer. Anal. vol. 25, 4, pp. 726-749 (2005).MR 2170521
  • 23. A. MARQUEZ, S. MEDDAHI AND V. SELGAS: A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems. Journal of Computational Physics, vol. 199, 1, pp. 205-220 (2004). MR 2081003 (2005b:74041)
  • 24. S. MEDDAHI AND F.-J. SAYAS: A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM Journal on Numerical Analysis, vol. 37, 6, pp. 2082-2102 (2000). MR 1766860 (2001e:65185)
  • 25. S. MEDDAHI AND V. SELGAS: A mixed-FEM and BEM coupling for a three-dimensional eddy current problem. Mathematical Modelling and Numerical Analysis, vol. 37, 2, pp. 291-318 (2003). MR 1991202 (2004f:78007)
  • 26. S. MEDDAHI, J. VALD´ES, O. MEN´ENDEZ, AND P. PSEREZ: On the coupling of boundary integral and mixed finite element methods. Journal of Computational and Applied Mathematics, vol. 69, pp. 113-124 (1996).MR 1391614 (97e:65137)
  • 27. I. PERUGIA AND D. SCHÖTZAU: On the coupling of local discontinuous Galerkin and conforming finite element methods. Journal of Scientific Computing, vol. 16, 4, pp. 411-433 (2001). MR 1881853 (2002k:65194)
  • 28. I. PERUGIA AND D. SCH¨OTZAU: An $ hp$-analysis of the local discontinuous Galerkin method for diffusion problems. Journal of Scientific Computing, vol. 17, 1-4, pp. 561-571 (2002). MR 1910752
  • 29. B. RIVIERE AND M.F. WHEELER: A posteriori error estimates and mesh adaptation strategy for discontinuous Galerkin methods applied to diffusion problems. Preprint 00-10, TICAM, University of Texas at Austin, USA (2000).
  • 30. F.-J. SAYAS: A nodal coupling of finite and boundary elements. Numerical Methods for Partial Differential Equations, vol. 19, 5, pp. 555-570 (2003). MR 1996220 (2004g:65160)
  • 31. S. SUN, B. RIVIERE AND M.F. WHEELER: A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. Recent progress in computational and applied PDEs (Zhangjiajie, 2001), pp. 323-351, Kluwer/Plenum, New York, 2002. MR 2039576 (2005b:65110)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N38, 65N12, 65N15

Retrieve articles in all journals with MSC (2000): 65N30, 65N38, 65N12, 65N15


Additional Information

Gabriel N. Gatica
Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Email: ggatica@ing-mat.udec.cl

Francisco-Javier Sayas
Affiliation: Departamento de Matemática Aplicada, Universidad de Zaragoza, Centro Politécnico Superior, María de Luna, 3 - 50018 Zaragoza, Spain
Email: jsayas@unizar.es

DOI: https://doi.org/10.1090/S0025-5718-06-01864-3
Keywords: Boundary elements, local discontinuous Galerkin, coupling, error estimates
Received by editor(s): January 3, 2005
Received by editor(s) in revised form: August 31, 2005
Published electronically: July 3, 2006
Additional Notes: This research was partially supported by CONICYT-Chile through the FONDAP Program in Applied Mathematics, by the Dirección de Investigación of the Universidad de Concepción through the Advanced Research Groups Program, by Spanish FEDER/MCYT Project MTM2004-019051, and by a grant of Programa Europa XXI (Gobierno Aragón + CAI)
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society