Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Energy norm a posteriori error estimates for mixed finite element methods

Authors: Carlo Lovadina and Rolf Stenberg
Journal: Math. Comp. 75 (2006), 1659-1674
MSC (2000): Primary 65N30
Published electronically: June 26, 2006
MathSciNet review: 2240629
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the a posteriori error analysis of mixed finite element methods for second order elliptic equations. It is shown that a reliable and efficient error estimator can be constructed using a postprocessed solution of the method. The analysis is performed in two different ways: under a saturation assumption and using a Helmholtz decomposition for vector fields.

References [Enhancements On Off] (What's this?)

  • 1. A. ALONSO, Error estimators for a mixed method, Numer. Math., 74 (1994), pp. 385-395. MR 1414415 (97g:65212)
  • 2. D. N. ARNOLD AND F. BREZZI, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér., 19 (1985), pp. 7-32. MR 0813687 (87g:65126)
  • 3. I. BABUšKA, J. OSBORN, AND J. PITKÄRANTA, Analysis of mixed methods using mesh dependent norms, Math. Comp., 35 (1980), pp. 1039-1062. MR 0583486 (81m:65166)
  • 4. D. BRAESS, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, 2001.MR 1827293 (2001k:65002)
  • 5. D. BRAESS AND R. VERFÜRTH, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal., 33 (1996), pp. 2431-2444.MR 1427472 (97m:65201)
  • 6. J. H. BRAMBLE AND J. XU, A local post-processing technique for improving the accuracy in mixed finite-element approximations, SIAM J. Numer. Anal., 26 (1989), pp. 1267-1275. MR 1025087 (90m:65193)
  • 7. F. BREZZI, J. DOUGLAS, JR., R. DURÁN, AND M. FORTIN, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51 (1987), pp. 237-250. MR 0890035 (88f:65190)
  • 8. F. BREZZI AND M. FORTIN, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991. MR 1115205 (92d:65187)
  • 9. F. BREZZI, J. DOUGLAS, JR., AND L. MARINI, Two families of mixed finite elements for second order elliptic problems., Numer. Math., 47 (1985), pp. 217-235. MR 0799685 (87g:65133)
  • 10. C. CARSTENSEN, A posteriori error estimate for the mixed finite element method, Math. Comp., 66 (1997), pp. 465-476. MR 1408371 (98a:65162)
  • 11. E. DARI, R. DURÁN, C. PADRA, AND V. VAMPA, A posteriori error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér., 30 (1996), pp. 385-400. MR 1399496 (97f:65066)
  • 12. V. GIRAULT AND P. RAVIART, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verlag, 1986.MR 0851383 (88b:65129)
  • 13. C. LOVADINA AND R. STENBERG, A posteriori error analysis of the linked interpolation technique for plate bending problems, SIAM J. Numer. Anal., 43 (2005), pp. 2227-2249. MR 2192338
  • 14. J.-C. NÉDÉLEC, A new family of mixed finite elements in $ R^3$, Numer. Math., 50 (1986), pp. 57-81. MR 0864305 (88e:65145)
  • 15. P. RAVIART AND J. THOMAS, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method. Lecture Notes in Math. 606, Springer-Verlag, 1977, pp. 292-315.MR 0483555 (58:3547)
  • 16. R. STENBERG, Some new families of finite elements for the Stokes equations, Numer. Math., 56 (1990), pp. 827-838. MR 1035181 (91d:65176)
  • 17. R. STENBERG, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér., 25 (1991), pp. 151-167.MR 1086845 (92a:65303)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30

Retrieve articles in all journals with MSC (2000): 65N30

Additional Information

Carlo Lovadina
Affiliation: Dipartimento di Matematica, Università di Pavia and IMATI-CNR, VIa Ferrata 1, Pavia 27100, Italy

Rolf Stenberg
Affiliation: Institute of Mathematics, Helsinki University of Technology, P.O. Box 1100, 02015 TKK, Finland

Keywords: Mixed finite element methods, a posteriori error estimates, postprocessing.
Received by editor(s): October 20, 2004
Received by editor(s) in revised form: June 7, 2005
Published electronically: June 26, 2006
Additional Notes: This work has been supported by the European Project HPRN-CT-2002-00284 “New Materials, Adaptive Systems and their Nonlinearities. Modelling, Control and Numerical Simulation”.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society