Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations


Authors: Jayadeep Gopalakrishnan and Joseph E. Pasciak
Journal: Math. Comp. 75 (2006), 1697-1719
MSC (2000): Primary 65F10, 65M55, 65N55, 65N30, 49N60, 74G15, 35Q60
DOI: https://doi.org/10.1090/S0025-5718-06-01884-9
Published electronically: July 6, 2006
MathSciNet review: 2240631
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate some simple finite element discretizations for the axisymmetric Laplace equation and the azimuthal component of the axisymmetric Maxwell equations as well as multigrid algorithms for these discretizations. Our analysis is targeted at simple model problems and our main result is that the standard V-cycle with point smoothing converges at a rate independent of the number of unknowns. This is contrary to suggestions in the existing literature that line relaxations and semicoarsening are needed in multigrid algorithms to overcome difficulties caused by the singularities in the axisymmetric Maxwell problems. Our multigrid analysis proceeds by applying the well known regularity based multigrid theory. In order to apply this theory, we prove regularity results for the axisymmetric Laplace and Maxwell equations in certain weighted Sobolev spaces. These, together with some new finite element error estimates in certain weighted Sobolev norms, are the main ingredients of our analysis.


References [Enhancements On Off] (What's this?)

  • 1. C. AMROUCHE, C. BERNARDI, M. DAUGE, AND V. GIRAULT, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), pp. 823-864. MR 1626990 (99e:35037)
  • 2. F. ASSOUS, P. CIARLET, JR., AND S. LABRUNIE, Theoretical tools to solve the axisymmetric Maxwell equations, Math. Methods Appl. Sci., 25 (2002), pp. 49-78.MR 1874449 (2002j:78008)
  • 3. C. BERNARDI, M. DAUGE, AND Y. MADAY, Spectral methods for axisymmetric domains, vol. 3 of Series in Applied Mathematics (Paris), Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 1999.
    Numerical algorithms and tests due to Mejdi Azaïez. MR 1693480 (2000h:65002)
  • 4. S. BEUCHLER, Fast solvers for degenerated problems, Tech. Rep. SFB393-Preprint 4, Technische Universität Chemnitz, SFB 393 (Germany), 2003.
  • 5. S. BÖRM AND R. HIPTMAIR, Analysis of tensor product multigrid, Numer. Algorithms, 26 (2001), pp. 219-234. MR 1832541 (2002a:65165)
  • 6. -, Multigrid computation of axisymmetric electromagnetic fields, Adv. Comput. Math., 16 (2002), pp. 331-356.MR 1894928 (2003d:78042)
  • 7. J. H. BRAMBLE AND X. ZHANG, The analysis of multigrid methods, in Handbook of numerical analysis, Vol. VII, North-Holland, Amsterdam, 2000, pp. 173-415.MR 1804746 (2001m:65183)
  • 8. -, Uniform convergence of the multigrid $ V$-cycle for an anisotropic problem, Math. Comp., 70 (2001), pp. 453-470.MR 1709148 (2001g:65134)
  • 9. A. BRANDT, Multigrid techniques: 1984 guide with applications to fluid dynamics, vol. 85 of GMD-Studien, Gesellschaft für Mathematik und Datenverarbeitung mbH, St. Augustin, 1984.MR 0772748 (87c:65139b)
  • 10. W. HACKBUSCH, Multi-Grid Methods and Applications, no. 4 in Springer series in Computational Mathematics, Springer-Verlag, Berlin, 1985. MR 0814495 (87e:65082)
  • 11. G. H. HARDY, J. E. LITTLEWOOD, AND G. PÓLYA, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988.
    Reprint of the 1952 edition. MR 0944909 (89d:26016)
  • 12. H. HOCHSTADT, The functions of mathematical physics, vol. XXIII of Pure and Applied Mathematics, Wiley-Interscience, New York, 1971. MR 0499342 (58:17241)
  • 13. A. KUFNER, Weighted Sobolev spaces, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985.
    Translated from the Czech. MR 0802206 (86m:46033)
  • 14. N. NEUSS, $ V$-cycle convergence with unsymmetric smoothers and application to an anisotropic model problem, SIAM J. Numer. Anal., 35 (1998), pp 1201-1212.MR 1619887 (99d:65109)
  • 15. A. REUSKEN, On a robust multigrid solver, Computing, 56 (1996), pp. 303-322.
    International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994). MR 1393011 (97g:65260)
  • 16. G. N. WATSON, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 2nd ed., 1952. MR 1349110 (96i:33010)
  • 17. H. YSERENTANT, The convergence of multi-level methods for solving finite-element equations in the presence of singularities, Math. Comp., 47 (1986), pp. 399-409.MR 0856693 (88d:65149)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65F10, 65M55, 65N55, 65N30, 49N60, 74G15, 35Q60

Retrieve articles in all journals with MSC (2000): 65F10, 65M55, 65N55, 65N30, 49N60, 74G15, 35Q60


Additional Information

Jayadeep Gopalakrishnan
Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611–8105
Email: jayg@math.ufl.edu

Joseph E. Pasciak
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843–3368
Email: pasciak@math.tamu.edu

DOI: https://doi.org/10.1090/S0025-5718-06-01884-9
Keywords: Multigrid, axisymmetric, Laplace equation, Maxwell equations, V-cycle, Jacobi, Gauss--Seidel, regularity, bilinear, finite element
Received by editor(s): May 20, 2004
Received by editor(s) in revised form: September 16, 2005
Published electronically: July 6, 2006
Additional Notes: This work was supported in part by NSF grant numbers DMS-0410030 and DMS-0311902. We also gratefully acknowledge support from ICES, The University of Texas at Austin.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society