On the minimal polynomial of Gauss periods for prime powers

Author:
S. Gurak

Journal:
Math. Comp. **75** (2006), 2021-2035

MSC (2000):
Primary 11L05, 11T22, 11T23

DOI:
https://doi.org/10.1090/S0025-5718-06-01885-0

Published electronically:
July 11, 2006

MathSciNet review:
2240647

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a positive integer , set and let denote the group of reduced residues modulo . Fix a congruence group of conductor and of order . Choose integers to represent the cosets of in . The Gauss periods

**1.**Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams,*Gauss and Jacobi sums*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR**1625181****2.**A. I. Borevich and I. R. Shafarevich,*Number theory*, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR**0195803****3.**Richard P. Brent,*On computing factors of cyclotomic polynomials*, Math. Comp.**61**(1993), no. 203, 131–149. MR**1205459**, https://doi.org/10.1090/S0025-5718-1993-1205459-2**4.**L.E. Dickson,*Elementary Theory of Equations*, Wiley, New York.**5.**Carl Friedrich Gauss,*Disquisitiones arithmeticae*, Translated into English by Arthur A. Clarke, S. J, Yale University Press, New Haven, Conn.-London, 1966. MR**0197380****6.**S. Gupta and D. Zagier,*On the coefficients of the minimal polynomials of Gaussian periods*, Math. Comp.**60**(1993), no. 201, 385–398. MR**1155574**, https://doi.org/10.1090/S0025-5718-1993-1155574-7**7.**S. Gurak, "Minimal polynomials for Gauss circulants and cyclotomic units," Pac. J. Math. 102 (1982), 347-353. MR**0686555 (84c:10032)****8.**S. Gurak, "Minimal polynomials for circular numbers," Pac. J. Math. 112 (1984), 313-331. MR**0743988 (85i:11107)****9.**S. Gurak, "Minimal polynomials for Gauss periods with f=2," Acta Arith. 121 (2006), 233-257.**10.**S. Gurak, "Explicit evaluation of multi-dimensional Kloosterman sums for prime powers" (to appear).**11.**Helmut Hasse,*Vorlesungen über Zahlentheorie*, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksightigung der Anwendungsgebiete. Band LIX, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950 (German). MR**0051844****12.**J. Neukirch,*Class Field Theory*, Springer-Verlag, New York, (1986). MR**0819231 (87i:11005)****13.**Hans Salié,*Über die Kloostermanschen Summen 𝑆(𝑢,𝑣;𝑞)*, Math. Z.**34**(1932), no. 1, 91–109 (German). MR**1545243**, https://doi.org/10.1007/BF01180579

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11L05,
11T22,
11T23

Retrieve articles in all journals with MSC (2000): 11L05, 11T22, 11T23

Additional Information

**S. Gurak**

Affiliation:
Department of Mathematics, University of San Diego, San Diego, California 92110

Email:
gurak@sandiego.edu

DOI:
https://doi.org/10.1090/S0025-5718-06-01885-0

Received by editor(s):
June 2, 2005

Published electronically:
July 11, 2006

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.