Carsten Carstensen, W. Liu, and N. Yan, A posteriori FE error control for \(p \)-Laplacian by gradient recovery in quasi-norm 1599
Jicheng Jin, Shi Shu, and Jinchao Xu, A two-grid discretization method for decoupling systems of partial differential equations 1617
Omar Lakiss and Charalambos Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems 1627
Carlo Lovadina and Rolf Stenberg, Energy norm a posteriori error estimates for mixed finite element methods ... 1659
Gabriel N. Gatica and Francisco-Javier Sayas, An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods ... 1675
Jayadeep Gopalakrishnan and Joseph E. Pasciak, The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations ... 1697
Volker Elling, A possible counterexample to well posedness of entropy solutions and to Godunov scheme convergence 1721
Bojan Popov and Ognian Trifonov, Order of convergence of second order schemes based on the minmod limiter ... 1735
Jianfeng Zhang, Rate of convergence of finite difference approximations for degenerate ordinary differential equations 1755
Robert Sinclair and Minoru Tanaka, Jacobi’s last geometric statement extends to a wider class of Liouville surfaces 1779
Christophe Berthon, Numerical approximations of the 10-moment Gaussian closure ... 1809
Clément Mouhot and Lorenzo Pareschi, Fast algorithms for computing the Boltzmann collision operator ... 1833
Shuai Lu and Sergei V. Pereverzev, Numerical differentiation from a viewpoint of regularization theory .. 1853
Helmut Harbrecht and Rob Stevenson, Wavelets with patchwise cancellation properties ... 1871
Dirk Laurie and Johan de Villiers, Orthogonal polynomials for refinable linear functionals ... 1891
Yi Jin, On efficient computation and asymptotic sharpness of Kalantari’s bounds for zeros of polynomials .. 1905
Peter Mathé and Sergei V. Pereverzev, Regularization of some linear ill-posed problems with discretized random noisy data 1913
Dorin Ervin Dutkay and Palle E. T. Jorgensen, Iterated function systems, Ruelle operators, and invariant projective measures 1931
Tatjana Eisner and Hans Zwart, Continuous-time Kreiss resolvent condition on infinite-dimensional spaces ... 1971
Ren-Cang Li, Lower bounds for the condition number of a real confluent Vandermonde matrix ... 1987
K. G. Hare and C. J. Smyth, The monic integer transfinite diameter .. 1997
S. Gurak, On the minimal polynomial of Gauss periods for prime powers . 2021
Thorsten Kleinjung, On polynomial selection for the general number field sieve .. 2037
Antonio Cafure and Guillermo Matera, Fast computation of a rational point of a variety over a finite field 2049
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguirre, Julián, Mikel Bilbao, and Juan Carlos Peral.</td>
<td>The trace of totally positive algebraic integers</td>
<td>385</td>
</tr>
<tr>
<td>Akrivis, Georgios, Charalambos Makridakis, and Ricardo H. Nochetto.</td>
<td>A posteriori error estimates for the Crank-Nicolson method for parabolic equations</td>
<td>511</td>
</tr>
<tr>
<td>Bai, Zhong-Zhi.</td>
<td>Structured preconditioners for nonsingular matrices of block two-by-two structures</td>
<td>791</td>
</tr>
<tr>
<td>Barnett, A. Ross.</td>
<td>See Broughan, Kevin A.</td>
<td></td>
</tr>
<tr>
<td>Barrett, John W., Harald Garcke, and Robert Nürnberg.</td>
<td>Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid</td>
<td>7</td>
</tr>
<tr>
<td>Barvinok, Alexander.</td>
<td>Computing the Ehrhart quasi-polynomial of a rational simplex</td>
<td>1449</td>
</tr>
<tr>
<td>Berend, Daniel, and Shahar Golan.</td>
<td>Littlewood polynomials with high order zeros</td>
<td>1541</td>
</tr>
<tr>
<td>Berthon, Christophe.</td>
<td>Numerical approximations of the 10-moment Gaussian closure</td>
<td>1809</td>
</tr>
<tr>
<td>Bilbao, Mikel.</td>
<td>See Aguirre, Julián</td>
<td></td>
</tr>
<tr>
<td>Booker, Andrew R.</td>
<td>Quadratic class numbers and character sums</td>
<td>1481</td>
</tr>
<tr>
<td>Borwein, Peter, Stephen Choi, and Frank Chu.</td>
<td>An old conjecture of Erdős-Turán on additive bases</td>
<td>475</td>
</tr>
<tr>
<td>Boulton, Lyonell.</td>
<td>Limiting set of second order spectra</td>
<td>1367</td>
</tr>
<tr>
<td>Broughan, Kevin A. and A. Ross Barnett.</td>
<td>Linear law for the logarithms of the Riemann periods at simple critical zeta zeros</td>
<td>891</td>
</tr>
<tr>
<td>Bultheel, Adhemar.</td>
<td>See Van Deun, Joris</td>
<td></td>
</tr>
<tr>
<td>Bürger, Raimund, Aníbal Coronel, and Mauricio Sepúlveda.</td>
<td>A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes</td>
<td>91</td>
</tr>
<tr>
<td>Cafure, Antonio, and Guillermo Matera.</td>
<td>Fast computation of a rational point of a variety over a finite field</td>
<td>2049</td>
</tr>
<tr>
<td>Carlson, B. C.</td>
<td>Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R-functions</td>
<td>1309</td>
</tr>
<tr>
<td>Carrero, Jesús, Bernardo Cockburn, and Dominik Schützau.</td>
<td>Hybridized globally divergence-free LDG methods. Part I: The Stokes problem</td>
<td>533</td>
</tr>
<tr>
<td>Carstensen, Carsten, and R. H. W. Hoppe.</td>
<td>Error reduction and convergence for an adaptive mixed finite element method</td>
<td>1033</td>
</tr>
<tr>
<td>Carstensen, Carsten, W. Liu, and N. Yan.</td>
<td>A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm</td>
<td>1599</td>
</tr>
<tr>
<td>Castro, Manuel, José M. Gallardo, and Carlos Parés.</td>
<td>High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems</td>
<td>1103</td>
</tr>
<tr>
<td>Chen, Zhiming, and Guanghua Ji.</td>
<td>Sharp L^1 a posteriori error analysis for nonlinear convection-diffusion problems</td>
<td>43</td>
</tr>
<tr>
<td>Choi, Stephen.</td>
<td>See Borwein, Peter</td>
<td></td>
</tr>
<tr>
<td>Chu, Delin, and Moody Chu.</td>
<td>Low rank update of singular values</td>
<td>1351</td>
</tr>
<tr>
<td>Chu, Frank.</td>
<td>See Borwein, Peter</td>
<td></td>
</tr>
<tr>
<td>Chu, Moody.</td>
<td>See Chu, Delin</td>
<td></td>
</tr>
<tr>
<td>Cockburn, Bernardo.</td>
<td>See Carrero, Jesús</td>
<td></td>
</tr>
<tr>
<td>Contini, Scott, Ernie Croot, and Igor E. Shparlinski.</td>
<td>Complexity of inverting the Euler function</td>
<td>983</td>
</tr>
<tr>
<td>Cools, Ronald.</td>
<td>See Nuyens, Dirk</td>
<td></td>
</tr>
<tr>
<td>Coronel, Aníbal.</td>
<td>See Bürger, Raimund</td>
<td></td>
</tr>
<tr>
<td>Cougnard, Jean.</td>
<td>Normal integral bases for A_4 extensions of the rationals</td>
<td>485</td>
</tr>
<tr>
<td>Coot, Ernie.</td>
<td>See Contini, Scott</td>
<td></td>
</tr>
<tr>
<td>Cuesta, Eduardo, Christian Lubich, and Cesar Palencia.</td>
<td>Convolution quadrature time discretization of fractional diffusion-wave equations</td>
<td>673</td>
</tr>
<tr>
<td>Cuyp, Annie, Jieqing Tan, and Ping Zhou.</td>
<td>General order multivariate Padé approximants for pseudo-multivariate functions</td>
<td>727</td>
</tr>
<tr>
<td>Demmel, James, and Plamen Koev.</td>
<td>Accurate and efficient evaluation of Schur and Jack functions</td>
<td>223</td>
</tr>
<tr>
<td>Díaz-Mendoza, C. P., González-Vera, M. Jiménez Paiz, and F. Cala Rodríguez.</td>
<td>Orthogonal Laurent polynomials corresponding to certain strong Stieltjes distributions with applications to numerical quadratures</td>
<td>281</td>
</tr>
<tr>
<td>Draziotis, Konstantinos, and Dimitrios Poulakis.</td>
<td>Practical solution of the Diophantine equation $y^2 = x(x + 2^ap^b)(x - 2^ap^b)$</td>
<td>1585</td>
</tr>
</tbody>
</table>
Draziotis, Konstantinos A. Integer points on the curve $Y^2 = X^3 \pm p^k X$, 1493
Dutkay, Dorin Ervin, and Palle E. T. Jorgensen. Iterated function systems, Ruelle operators, and invariant projective measures, 1931
Edelman, Alan. See Koev, Plamen
Eisner, Tatjana, and Hans Zwart. Continuous-time Kreiss resolvent condition on infinite-dimensional spaces, 1721
Elling, Volker. A possible countereexample to well posedness of entropy solutions and to Godunov scheme convergence, 1403
Elsenhans, Andreas-Stephan, and Jörg Jahnel. The Diophantine equation $x^4 + 2y^4 = z^4 + 4w^4$, 935
Espedal, Magne S. See Garrido, Izaskun
Fang, Gensun, and Xuehua Li. Comparison theorems of Kolmogorov type and exact values of n-widths on Hardy-Sobolev classes, 241
Fang, Kai-Tai, Dietmar Maringer, Yu Tang, and Peter Winker. Lower bounds and stochastic optimization algorithms for uniform designs with three or four levels, 859
Farr, Jeffrey B., and Shuhong Gao. Gröbner bases and generalized Padé approximation, 461
Fauquembergue, Blaise, Jérôme Pousin, and Franck Fontvieille. An efficient numerical scheme for the three time integrations of a diffusion-dissolution/precipitation chemical system, 209
Fieker, Claus, and Michael E. Pohst. Dependency of units in number fields, 1507
Fladmark, Gunnar E. See Garrido, Izaskun
Flammang, Valérie, Georges Rhin, and Jean-Marc Sac-Epée. Integer transfinite diameter and polynomials with small Mahler measure, 1527
Fontvieille, Franck. See Fauquembergue, Blaise
Gallardo, José M. See Castro, Manuel
Gantumur, Tsogtgerel, and Rob Stevenson. Computation of differentiable operators in wavelet coordinates, 697
Gao, Shuhong. See Farr, Jeffrey B.
García, Harald. See Barrett, John W.
Garrido, Izaskun, Barry Lee, Gunnar E. Fladmark, and Magne S. Espedal. Convergent iterative schemes for time parallelization, 1403
Gatica, Gabriel N., and Francisco-Javier Sayas. An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods, 1675
Gebauer, Susanna, Ralf Kornhuber, and Harry Yserentant. Hierarchical decomposition of domains with fractures, 73
Girard, Martine. The group of Weierstrass points of a plane quartic with at least eight hyperflexes, 1561
Golub, Shahar. See Berend, Daniel
González-Vera, P. See Díaz-Mendoza, C.
See Van Deun, Joris
Goodrich, John, Thomas Hagstrom, and Jens Lorenz. Hermite methods for hyperbolic initial-boundary value problems, 505
Gopalakrishnan, Jayadeep, and Joseph E. Pasciak. The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations, 1679
Granville, Andrew, and Peter Pleasants. Aursceullian factorization, 497
Griebel, Michael, and Henryk Woźniakowski. On the optimal convergence rate of universal and nonuniversal algorithms for multivariate integration and approximation, 1259
Gurak, S. On the minimal polynomial of Gauss periods for prime powers, 2021
Guzmán, Johnny. Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems, 1067
Hagstrom, Thomas. See Goodrich, John
Han, Bin, and Rong-Qing Jia. Optimal C^2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils, 1287
Hansen, Eskil. Runge-Kutta time discretizations of nonlinear dissipative evolution equations, 631
Harbrecht, Helmut, and Rob Stevenson. Wavelets with patchwise cancellation properties, 1871
Hare, K. G., and C. J. Smyth. The monic integer transfinite diameter, 1997
Hasson, Mauric. Wavelet-based filters for accurate computation of derivatives, 259
<table>
<thead>
<tr>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holden, Joshua, and Pieter Moree</td>
<td>Some heuristics and results for small cycles of the discrete logarithm, 419</td>
</tr>
<tr>
<td>Hong, Jialin, Hongyu Liu, and Geng Sun</td>
<td>The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs, 167</td>
</tr>
<tr>
<td>Hoppe, R. H. W.</td>
<td>See Carstensen, Carsten</td>
</tr>
<tr>
<td>Hundsdorfer, Willem, and Steven J. Ruuth</td>
<td>On monotonicity and boundedness properties of linear multistep methods, 655</td>
</tr>
<tr>
<td>Iserles, Arieh, and Syvert P. Nørsett</td>
<td>Quadrature methods for multivariate highly oscillatory integrals using derivatives, 1233</td>
</tr>
<tr>
<td>Jahnel, Jörg.</td>
<td>See Eisenhans, Andreas-Stephan</td>
</tr>
<tr>
<td>Jay, Laurent O.</td>
<td>Specialized Runge-Kutta methods for index 2 differential-algebraic equations, 641</td>
</tr>
<tr>
<td>Ji, Guanghua.</td>
<td>See Chen, Zhiming</td>
</tr>
<tr>
<td>Jia, Rong-Qing.</td>
<td>See Han, Bin</td>
</tr>
<tr>
<td>Jin, Jicheng, Shi Shu, and Jinchao Xu.</td>
<td>A two-grid discretization method for decoupling systems of partial differential equations, 1617</td>
</tr>
<tr>
<td>Jin, Yi.</td>
<td>On efficient computation and asymptotic sharpness of Kalantari’s bounds for zeros of polynomials, 1905</td>
</tr>
<tr>
<td>Jorgensen, Palle E. T.</td>
<td>See Dutkay, Dorin Ervin</td>
</tr>
<tr>
<td>Jung, H. S.</td>
<td>Hermite and Hermite–Fejér interpolation for Stieltjes polynomials, 743</td>
</tr>
<tr>
<td>Kleinjung, Thorsten.</td>
<td>On polynomial selection for the general number field sieve, 2037</td>
</tr>
<tr>
<td>Kodal, H.</td>
<td>See Pan, V. Y.</td>
</tr>
<tr>
<td>Koev, Plamen.</td>
<td>See Demmel, James</td>
</tr>
<tr>
<td>Koev, Plamen, and Alan Edelman.</td>
<td>The efficient evaluation of the hypergeometric function of a matrix argument, 833</td>
</tr>
<tr>
<td>Kornhuber, Ralf.</td>
<td>See Gebauer, Susanna</td>
</tr>
<tr>
<td>Kulkarni, Rekha P.</td>
<td>A new superconvergent collocation method for eigenvalue problems, 847</td>
</tr>
<tr>
<td>Kunin, M.</td>
<td>See Pan, V. Y.</td>
</tr>
<tr>
<td>Kunoth, Angela, and Jan Sahner.</td>
<td>Wavelets on manifolds: An optimized construction, 1319</td>
</tr>
<tr>
<td>Kwon, Soun-Hi.</td>
<td>See Lee, Geon-No</td>
</tr>
<tr>
<td>La Cruz, William, José Mario Martínez, and Marcos Raydan.</td>
<td>Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, 1429</td>
</tr>
<tr>
<td>Lakkis, Omar, and Charalambos Makridakis.</td>
<td>Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, 1627</td>
</tr>
<tr>
<td>Laurie, Dirk, and Johan de Villiers.</td>
<td>Orthogonal polynomials for refinable linear functionals, 1891</td>
</tr>
<tr>
<td>LeCerf, Grégoire.</td>
<td>Sharp precision in Hensel lifting for bivariate polynomial factorization, 921</td>
</tr>
<tr>
<td>Lee, Barry.</td>
<td>See Garrido, Izaskun</td>
</tr>
<tr>
<td>Lee, Geon-No, and Soun-Hi Kwon.</td>
<td>CM-fields with relative class number one, 997</td>
</tr>
<tr>
<td>Li, Ren-Cang.</td>
<td>Lower bounds for the condition number of a real confluent Vandermonde matrix, 1987</td>
</tr>
<tr>
<td>Li, Xuehua.</td>
<td>See Fang, Gensun</td>
</tr>
<tr>
<td>Lie, Johan, Marius Lysaker, and Xue-Cheng Tai.</td>
<td>A variant of the level set method and applications to image segmentation, 1155</td>
</tr>
<tr>
<td>Lippincott, L. E.</td>
<td>See Grundman, H. G.</td>
</tr>
<tr>
<td>Liu, Hongyu.</td>
<td>See Hong, Jialin</td>
</tr>
<tr>
<td>Liu, W.</td>
<td>See Carstensen, Carsten</td>
</tr>
<tr>
<td>Lorenz, Jens.</td>
<td>See Goodrich, John</td>
</tr>
<tr>
<td>Lovadina, Carlo, and Rolf Stenberg.</td>
<td>Energy norm a posteriori error estimates for mixed finite element methods, 1659</td>
</tr>
<tr>
<td>Lu, Shuai, and Sergei V. Pereverzev.</td>
<td>Numerical differentiation from a viewpoint of regularization theory, 1853</td>
</tr>
<tr>
<td>Lubich, Christian.</td>
<td>See Cuesta, Eduardo</td>
</tr>
<tr>
<td>Lyness, J. N., and Tor Sørevik.</td>
<td>Five-dimensional K-optimal lattice rules, 1467</td>
</tr>
<tr>
<td>Lysaker, Marius.</td>
<td>See Lie, Johan</td>
</tr>
<tr>
<td>Makridakis, Charalambos.</td>
<td>See Akrivis, Georgios</td>
</tr>
<tr>
<td>Mardal, Kent-Andre, and Ragnar Winther.</td>
<td>An observation on Korn’s inequality for nonconforming finite element methods, 1</td>
</tr>
</tbody>
</table>
INDEX TO VOLUME 75 (2006)

Maringer, Dietmar. See Fang, Kai-Tai
Martínez, José Mario. See La Cruz, William
Matalla-aho, Tapani, Keijo Väätäinen, and Wadim Zudilin. New irrationality measures for q-logarithms, 879

Matera, Guillermo. See Cafure, Antonio
Mathé, Peter, and Sergei V. Pereverzev. Regularization of some linear ill-posed problems with discretized random noisy data, 1913
Melman, A. Computation of the Newton step for the even and odd characteristic polynomials of a symmetric positive definite Toeplitz matrix, 817
Ming, Pingbing, and Zhong-ci Shi. Analysis of some low order quadrilateral Reissner-Mindlin plate elements, 1043
Moree, Pieter. See Holden, Joshua
Mouhot, Clément, and Lorenzo Pareschi. Fast algorithms for computing the Boltzmann collision operator, 1833
Muir, James A., and Douglas R. Stinson. Minimality and other properties of the width-w non-adjacent form, 369
Nocenti, Ricardo H. See Akridis, Georgios
Noël, Alfred G. Some remarks on Richardson orbits in complex symmetric spaces, 395
Nørsett, Syvert P. See Iserles, Arieh
Notaris, Sotirios E. Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions, 1217
Nürnberg, Robert. See Barrett, John W.
O’Riordan, E., M. L. Pickett, and G. I. Shishkin. Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems, 1135
Özdemir, Ismet, and Ö. Faruk Temizer. The boundaries of the solutions of the linear Volterra integral equations with convolution kernel, 1175
Paiz, M. Jiménez. See Díaz-Mendoza, C.
Palencia, Cesar. See Cuesta, Eduardo
Pan, V. Y., M. Kunin, R. E. Rosholt, and H. Kodal. Homotopic residual correction processes, 345
Parés, Carlos. See Castro, Manuel
Pareschi, Lorenzo. See Mouhot, Clément
Pasciak, Joseph E. See Gopalakrishnan, Jayadeep
Peral, Juan Carlos. See Aguirre, Julián
Pereverzev, Sergei V. See Lu, Shuai
Plias Mathé, Peter
Pickett, M. L. See O’Riordan, E.
Pleasants, Peter. See Granville, Andrew
Polst, Michael E. See Ficker, Claus
Popov, Bojan, and Ognian Trifonov. Order of convergence of second order schemes based on the minmod limiter, 1735
Poulakis, Dimitrios. See Draziotis, Konstantinos
Pousin, Jérôme. See Faugeras, Blaise
Raydan, Marcos. See La Cruz, William
Rhin, Georges. See Flammang, Valérie
Rodríguez, F. Cala. See Díaz-Mendoza, C.
Rosholt, R. E. See Pan, V. Y.
Ruth, Steven J. Global optimization of explicit strong-stability-preserving Runge-Kutta methods, 183
Ruth, Steven J. See Hundsdorfer, Willem
Sac-Épée, Jean-Marc. See Flammang, Valérie
Sahner, Jan. See Kunoth, Angela
Sayas, Francisco-Javier. See Gatica, Gabriel N.
Schötzau, Dominik. See Carrero, Jesús

Sepúlveda, Mauricio. *See Bürger, Raimund*

Shi, Zhong-ci. *See Ming, Pingbing*

Shishkin, G. I. *See O’Riordan, E.*

Shparlinski, Igor E. *See Contini, Scott*

Shu, Shi. *See Jin, Jicheng*

Sidi, Avram. *Extension of a class of periodizing variable transformations for numerical integration*, 327

Sinclair, Robert, and Minoru Tanaka. *Jacobi’s last geometric statement extends to a wider class of Liouville surfaces*, 1779

Smyth, C. J. *See Hare, K. G.*

Sørevik, Tor. *See Lyness, J. N.*

Sorokina, Tatyana. *See Schumaker, Larry L.*

Stenberg, Rolf. *See Lovadina, Carlo*

Stevenson, Rob. *See Gantumur, Tsogtgerel*

____. *See Harbrecht, Helmut*

Stinson, Douglas R. *See Muir, James A.*

Sun, Geng. *See Hong, Jialin*

Sun, Leping. *Stability analysis for delay differential equations with multidelays and numerical examples*, 151

Suzuki, Koji. *Approximating the number of integers without large prime factors*, 1015

Sylla, Lesseni. *The nonexistence of nonsolvable octic number fields ramified only at one small prime*, 1519

Szeftel, Jérémie. *A nonlinear approach to absorbing boundary conditions for the semilinear wave equation*, 565

Tai, Xue-Cheng. *See Lie, Johan*

Tan, Jieqing. *See Cuyt, Annie*

Tanabé, S., and M. N. Vrahatis. *On perturbation of roots of homogeneous algebraic systems*, 1383

Tanaka, Minoru. *See Sinclair, Robert*

Tang, Yu. *See Fang, Kai-Tai*

Tanner, Jared. *Optimal filter and mollifier for piecewise smooth spectral data*, 767

Temizer, Ö. Faruk. *See Özdemir, Ismet*

Trifonov, Ognian. *See Popov, Bojan*

Vääränen, Keijo. *See Matala-aho, Tapani*

de Villiers, Johan. *See Laurie, Dirk*

Vovelle, Julien. *See Ohlberger, Mario*

Vrahatis, M. N. *See Tanabé, S.*

Weilert, André. *Two efficient algorithms for the computation of ideal sums in quadratic orders*, 941

Wihler, Thomas P. *Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems*, 1087

Winker, Peter. *See Fang, Kai-Tai*

Winther, Ragnar. *See Mardal, Kent-Andre*

Woźniakowski, Henryk. *See Griebel, Michael*

Xu, Jinchao. *See Jin, Jicheng*

Xu, Y. *See Liu, M. Z.*

Yan, N. *See Carstensen, Carsten*

Yang, Z. W. *See Liu, M. Z.*

Yserentant, Harry. *See Gebauer, Susanna*

Zhang, Jianfeng. *Rate of convergence of finite difference approximations for degenerate ordinary differential equations*, 1755

Zhang, Zhenxiang. *Notes on some new kinds of pseudoprimes*, 451

Zhou, Ping. *See Cuyt, Annie*

Zudilin, Wadim. *See Matala-aho, Tapani*

Zwart, Hans. *See Eiern, Tatjana*
INDEX OF REVIEWS BY AUTHOR OF WORK REVIEWED

<table>
<thead>
<tr>
<th>Author</th>
<th>Review Number</th>
<th>Classification</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunner, Hermann</td>
<td>2</td>
<td>65R20, 65L05, 65L20, 65L50, 65L60, 65L80, 45D05</td>
<td>1025</td>
</tr>
<tr>
<td>Chiu, Moody T., & Gene Golub</td>
<td>4</td>
<td>15A18, 15A29, 15A90</td>
<td>1029</td>
</tr>
<tr>
<td>Eick, Bettina</td>
<td>3</td>
<td>See Holt, Derek F.</td>
<td>1026</td>
</tr>
<tr>
<td>Elman, Howard, David</td>
<td>5</td>
<td>35Q30, 65F10, 65M55, 65M60, 65N30, 65N55</td>
<td>1595</td>
</tr>
<tr>
<td>Silvester, & Andy Wathen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golub, Gene</td>
<td>4</td>
<td>See Chiu, Moody T.</td>
<td>1029</td>
</tr>
<tr>
<td>Holt, Derek F., Bettina Eick, & Eamonn A. O'Brien</td>
<td>3</td>
<td>20B40, 20C40</td>
<td>1026</td>
</tr>
<tr>
<td>Leimkuhler, Benedict, & Sebastian Reich</td>
<td>1</td>
<td>65P10, 65Lxx, 70Fxx, 70H05</td>
<td>509</td>
</tr>
<tr>
<td>Mitzenmacher, Michael, & Eli Upfal</td>
<td>6</td>
<td>60-01, 65C05, 68Qxx, 68W20</td>
<td>1596</td>
</tr>
<tr>
<td>O'Brien, Eamonn A.</td>
<td>3</td>
<td>See Holt, Derek F.</td>
<td>1026</td>
</tr>
<tr>
<td>Reich, Sebastian</td>
<td>1</td>
<td>See Leimkuhler, Benedict</td>
<td>509</td>
</tr>
<tr>
<td>Silvester, David</td>
<td>5</td>
<td>See Elman, Howard</td>
<td>1595</td>
</tr>
<tr>
<td>Wathen, Andy</td>
<td>5</td>
<td>See Elman, Howard</td>
<td>1595</td>
</tr>
</tbody>
</table>

INDEX OF REVIEWS BY SUBJECT OF WORK REVIEWED

<table>
<thead>
<tr>
<th>15-XX Linear and multilinear algebra; matrix theory</th>
<th>Review Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15A18 Eigenvalues, singular values, and eigenvectors</td>
<td>4</td>
<td>Inverse eigenvalue problems: Theory, algorithms, and applications</td>
<td>1029</td>
</tr>
<tr>
<td>15A29 Inverse problems</td>
<td>4</td>
<td>Inverse eigenvalue problems: Theory, algorithms, and applications</td>
<td>1029</td>
</tr>
<tr>
<td>15A90 Applications of matrix theory to physics</td>
<td>4</td>
<td>Inverse eigenvalue problems: Theory, algorithms, and applications</td>
<td>1029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20-XX Group theory and generalizations</th>
<th>Review Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20B40 Computational methods</td>
<td>3</td>
<td>Handbook of computational group theory</td>
<td>1026</td>
</tr>
<tr>
<td>20C40 Computational methods</td>
<td>3</td>
<td>Handbook of computational group theory</td>
<td>1026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>35-XX Partial differential equations</th>
<th>Review Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35Q30 Stokes and Navier-Stokes equations</td>
<td>5</td>
<td>Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics</td>
<td>1595</td>
</tr>
<tr>
<td>Subject of Work Reviewed</td>
<td>Author(s)</td>
<td>Volume</td>
<td>Title</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>45-XX Integral equations</td>
<td>Brunner, Hermann</td>
<td>2</td>
<td>Collocation methods for Volterra integral and related functional equations</td>
</tr>
<tr>
<td>60-XX Probability theory and stochastic processes</td>
<td>Mitzenmacher, Michael, & Eli Upfal</td>
<td>6</td>
<td>Probability and computing: randomized algorithms and probabilistic analysis</td>
</tr>
<tr>
<td>65-XX Numerical analysis</td>
<td>Mitzenmacher, Michael, & Eli Upfal</td>
<td>6</td>
<td>Probability and computing: randomized algorithms and probabilistic analysis</td>
</tr>
<tr>
<td></td>
<td>Elman, Howard, David, Silvester, & Andy Wathen</td>
<td>5</td>
<td>Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics</td>
</tr>
<tr>
<td>65Lxx Ordinary differential equations</td>
<td>Leimkuhler, Benedict, & Sebastian Reich</td>
<td>1</td>
<td>Simulating Hamiltonian dynamics</td>
</tr>
<tr>
<td></td>
<td>Brunner, Hermann</td>
<td>2</td>
<td>Collocation methods for Volterra integral and related functional equations</td>
</tr>
<tr>
<td></td>
<td>Brunner, Hermann</td>
<td>2</td>
<td>Collocation methods for Volterra integral and related functional equations</td>
</tr>
<tr>
<td></td>
<td>Brunner, Hermann</td>
<td>2</td>
<td>Collocation methods for Volterra integral and related functional equations</td>
</tr>
<tr>
<td></td>
<td>Brunner, Hermann</td>
<td>2</td>
<td>Collocation methods for Volterra integral and related functional equations</td>
</tr>
<tr>
<td></td>
<td>Brunner, Hermann</td>
<td>2</td>
<td>Collocation methods for Volterra integral and related functional equations</td>
</tr>
<tr>
<td></td>
<td>Elman, Howard, David, Silvester, & Andy Wathen</td>
<td>5</td>
<td>Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics</td>
</tr>
<tr>
<td></td>
<td>Elman, Howard, David, Silvester, & Andy Wathen</td>
<td>5</td>
<td>Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics</td>
</tr>
<tr>
<td></td>
<td>Elman, Howard, David, Silvester, & Andy Wathen</td>
<td>5</td>
<td>Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics</td>
</tr>
<tr>
<td>Subject Code</td>
<td>Subject Description</td>
<td>Authors</td>
<td>Title of Work Reviewed</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>65N55</td>
<td>Multigrid methods; domain decomposition</td>
<td>Elman, Howard, David Silvester, & Andy Wathen</td>
<td>Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics</td>
</tr>
<tr>
<td>65P10</td>
<td>Hamiltonian systems including symplectic integrators</td>
<td>Leimkuhler, Benedict, & Sebastian Reich</td>
<td>Simulating Hamiltonian dynamics</td>
</tr>
<tr>
<td>65R20</td>
<td>Integral equations</td>
<td>Brunner, Hermann</td>
<td>Collocation methods for Volterra integral and related functional equations</td>
</tr>
<tr>
<td>68-XX</td>
<td>Computer science</td>
<td>Mitzenmacher, Michael, & Eli Upfal</td>
<td>Probability and computing: randomized algorithms and probabilistic analysis</td>
</tr>
<tr>
<td>70-XX</td>
<td>Mechanics of particles and systems</td>
<td>Leimkuhler, Benedict, & Sebastian Reich</td>
<td>Simulating Hamiltonian dynamics</td>
</tr>
<tr>
<td>70H05</td>
<td>Hamilton’s equations</td>
<td>Leimkuhler, Benedict, & Sebastian Reich</td>
<td>Simulating Hamiltonian dynamics</td>
</tr>
</tbody>
</table>
EDITED BY
Randolph E. Bank
Peter B. Borwein
David W. Boyd
Susanne C. Brenner
Richard P. Brent
Carsten Carstensen
Bernardo Cockburn
Arjen M. Cohen
Ronald F. A. Cools
Howard Elman
Ivan P. Gavrilyuk
Vivette Girault
Ernst Hairer
Daniel W. Lozier
Jean-François Mestre
Marian Neamtu
Harald Niederreiter
Ricardo H. Nochetto
Stanley Osher
Joseph E. Pasciak
Lothar Reichel
Jie Shen
Igor E. Shparlinski
Chi-Wang Shu, Managing Editor
Michael E. Stillman
Denis Talay
Tao Tang
Paul Y. Tseng
Hugh C. Williams
Jinchao Xu
Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology. Reviews of books in areas related to computational mathematics are also included.

Submission information. See Information for Authors at the end of this issue.

Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of the first page of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval.

Postings to the AMS website. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published quarterly. Beginning in January 1996 Mathematics of Computation is accessible from www.ams.org/journals/. Subscription prices for Volume 75 (2006) are as follows: for paper delivery, $467 list, $374 institutional member, $420 corporate member, $304 member of CBMS organizations; $280 individual member; for electronic delivery, $420 list, $336 institutional member, $378 corporate member, $273 member of CBMS organizations, $252 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add $15 for surface delivery outside the United States and India; $18 to India. Expedited delivery to destinations in North America is $17; elsewhere $56.

Back number information. For back issues see the www.ams.org/bookstore.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2294 USA.

Copying and reprinting. Material in this journal may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)
Kent-Andre Mardal and Ragnar Winther, An observation on Korn’s inequality for nonconforming finite element methods 1
John W. Barrett, Harald Garcke, and Robert Nürnberg, Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid .. 7
Zhiming Chen and Guanghua Ji, Sharp L^1 a posteriori error analysis for nonlinear convection-diffusion problems 43
Susanna Gebauer, Ralf Kornhuber, and Harry Yserentant, Hierarchical decomposition of domains with fractures 73
Raimund Bürger, Aníbal Coronel, and Mauricio Sepúlveda, A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes 91
Mario Ohlberger and Julien Vovelle, Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method .. 113
Leping Sun, Stability analysis for delay differential equations with multidelays and numerical examples 151
Jialin Hong, Hongyu Liu, and Geng Sun, The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs 167
Steven J. Ruuth, Global optimization of explicit strong-stability-preserving Runge-Kutta methods .. 183
Blaise Faugeras, Jérôme Pousin, and Franck Fontvieille, An efficient numerical scheme for precise time integration of a diffusion-dissolution/precipitation chemical system 209
James Demmel and Plamen Koev, Accurate and efficient evaluation of Schur and Jack functions .. 223
Gensun Fang and Xuehua Li, Comparison theorems of Kolmogorov type and exact values of n-widths on Hardy–Sobolev classes 241
Maurice Hasson, Wavelet-based filters for accurate computation of derivatives .. 259
C. Díaz-Mendoza, P. González-Vera, M. Jiménez Paiz, and F. Cala Rodríguez, Orthogonal Laurent polynomials corresponding to certain strong Stieltjes distributions with applications to numerical quadratures 281
Joris Van Deun, Adhemar Bultheel, and Pablo González Vera, On computing rational Gauss-Chebyshev quadrature formulas 307
Avram Sidi, Extension of a class of periodizing variable transformations for numerical integration .. 327
V. Y. Pan, M. Kunin, R. E. Rosholts, and H. Kodal, Homotopic residual correction processes .. 345
James A. Muir and Douglas R. Stinson, Minimality and other properties of the width-w nonadjacent form 369
Julían Aguirre, Mikel Bilbao, and Juan Carlos Peral, The trace of totally positive algebraic integers ... 385
Alfred G. Noël, Some remarks on Richardson orbits in complex symmetric spaces .. 395
Joshua Holden and Pieter Moree, Some heuristics and results for small cycles of the discrete logarithm .. 419
Zhenxiang Zhang, Notes on some new kinds of pseudoprimes 451
Jeffrey B. Farr and Shuhong Gao, Gröbner bases and generalized Padé approximation .. 461
Peter Borwein, Stephen Choi, and Frank Chu, An old conjecture of Erdős–Turán on additive bases 475
Jean Cougnard, Normal integral bases for A_4 extensions of the rationals . 485
Andrew Granville and Peter Pleasants, Aurifeuillian factorization 497
Reviews and Descriptions of Tables and Books 509
Benedict Leimkuhler and Sebastian Reich 1

Vol. 75, No. 254 April 2006

Georgios Akrivis, Charalambos Makridakis, and Ricardo H. Nochetto, A posteriori error estimates for the Crank–Nicolson method for parabolic equations ... 511
Jesús Carrero, Bernardo Cockburn, and Dominik Schötzau, Hybridized globally divergence-free LDG methods. Part I: The Stokes problem ... 533
Jérémie Szeftel, A nonlinear approach to absorbing boundary conditions for the semilinear wave equation .. 565
John Goodrich, Thomas Hagstrom, and Jens Lorenz, Hermite methods for hyperbolic initial-boundary value problems 595
Eskil Hansen, Runge-Kutta time discretizations of nonlinear dissipative evolution equations .. 631
Laurent O. Jay, Specialized Runge-Kutta methods for index 2 differential-algebraic equations .. 641
Willem Hundsdorfer and Steven J. Ruuth, On monotonicity and boundedness properties of linear multistep methods 655
Eduardo Cuesta, Christian Lubich, and Cesar Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations . 673
Tsogtgerel Gantumur and Rob Stevenson, Computation of differential operators in wavelet coordinates .. 697
Larry L. Schumaker and Tatyana Sorokina, Smooth macro-elements on Powell-Sabin-12 splits .. 711
Annie Cuyt, Jieqing Tan, and Ping Zhou, General order multivariate Padé approximants for pseudo-multivariate functions 727
H. S. Jung, Hermite and Hermite–Fejér interpolation for Stieltjes polynomials ... 743
Jared Tanner, Optimal filter and mollifier for piecewise smooth spectral data .. 767
Zhong-Zhi Bai, Structured preconditioners for nonsingular matrices of block two-by-two structures .. 791
A. Melman, Computation of the Newton step for the even and odd characteristic polynomials of a symmetric positive definite Toeplitz matrix ... 817
Plamen Koev and Alan Edelman, The efficient evaluation of the hypergeometric function of a matrix argument 833
Rekha P. Kulkarni, A new superconvergent collocation method for eigenvalue problems .. 847
Kai-Tai Fang, Dietmar Maringer, Yu Tang, and Peter Winker, Lower bounds and stochastic optimization algorithms for uniform designs with three or four levels 859
Tapani Matala-aho, Keijo Väänänen, and Wadim Zudilin, New irrationality measures for q-logarithms .. 879
Kevin A. Broughan and A. Ross Barnett, Linear law for the logarithms of the Riemann periods at simple critical zeta zeros 891
Dirk Nuyens and Ronald Cools, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces 903
Grégoire Lecerf, Sharp precision in Hensel lifting for bivariate polynomial factorization ... 921
Andreas-Stephan Elsenhans and Jörg Jahnel, The Diophantine equation $x^4 + 2y^4 = z^4 + 4w^4$.. 935
André Weilert, Two efficient algorithms for the computation of ideal sums in quadratic orders ... 941
Scott Contini, Ernie Croot, and Igor E. Shparlinski, Complexity of inverting the Euler function ... 983
Geon-No Lee and Soun-Hi Kwon, CM-fields with relative class number one ... 997
Koji Suzuki, Approximating the number of integers without large prime factors .. 1015
Reviews and Descriptions of Tables and Books 1025
Hermann Brunner 2, Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien 3, Moody T. Chu and Gene Golub 4

Vol. 75, No. 255
July 2006

Carsten Carstensen and R. H. W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method 1033
Pingbing Ming and Zhong-ci Shi, Analysis of some low order quadrilateral Reissner-Mindlin plate elements 1043
Johnny Guzmán, Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems 1067
Thomas P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems 1087
Manuel Castro, José M. Gallardo, and Carlos Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems .. 1103
E. O’Riordan, M. L. Pickett, and G. I. Shishkin, Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems ... 1135
Johan Lie, Marius Lysaker, and Xue-Cheng Tai, A variant of the level set method and applications to image segmentation 1155
Ismet Özdemir and Ö. Faruk Temizer, The boundaries of the solutions of the linear Volterra integral equations with convolution kernel 1175
Sotirios E. Notaris, Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions 1217
Arieh Iserles and Syvert P. Nørsett, Quadrature methods for multivariate highly oscillatory integrals using derivatives 1233
Michael Griebel and Henryk Woźniakowski, On the optimal convergence rate of universal and nonuniversal algorithms for multivariate integration and approximation ... 1259
Bin Han and Rong-Qing Jia, Optimal C^2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils 1287
B. C. Carlson, Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R-functions 1309
Angela Kunoth and Jan Sahner, Wavelets on manifolds: An optimized construction ... 1319
Delin Chu and Moody Chu, Low rank update of singular values 1351
Lyonell Boulton, Limiting set of second order spectra 1367
S. Tanabé and M. N. Vrahatis, On perturbation of roots of homogeneous algebraic systems ... 1383
Izaskun Garrido, Barry Lee, Gunnar E. Fladmark, and Magne S. Espedal, Convergent iterative schemes for time parallelization 1403
William La Cruz, José Mario Martínez, and Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations .. 1429
Alexander Barvinok, Computing the Ehrhart quasi-polynomial of a rational simplex ... 1449
J. N. Lyness and Tor Sørevik, Five-dimensional K-optimal lattice rules 1467
Andrew R. Booker, Quadratic class numbers and character sums 1481
Konstantinos A. Draziotis, Integer points on the curve $Y^2 = X^3 \pm p^k X$ 1493
Claus Fieker and Michael E. Pohst, Dependency of units in number fields 1507
Lesseni Sylla, The nonexistence of nonsolvable octic number fields ramified only at one small prime .. 1519
Valérie Flammang, Georges Rhin, and Jean-Marc Sac-Épée, Integer transfinite diameter and polynomials with small Mahler measure 1527
Daniel Berend and Shahar Golan, Littlewood polynomials with high order zeros ... 1541
H. G. Grundman and L. E. Lippincott, Computing the arithmetic genus of Hilbert modular fourfolds ... 1553
Martine Girard, The group of Weierstrass points of a plane quartic with at least eight hyperflexes ... 1561
Konstantinos Draziotis and Dimitrios Poulakis, Practical solution of the Diophantine equation \(y^2 = x(x + 2^a p^b)(x - 2^a p^b) \) 1585
Reviews and Descriptions of Tables and Books 1595
Howard Elman, David Silvester, and Andy Wathen 5, Michael Mitzenmacher and Eli Upfal 6

Vol. 75, No. 256 October 2006

Carsten Carstensen, W. Liu, and N. Yan, A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm 1599
Jicheng Jin, Shi Shu, and Jinchao Xu, A two-grid discretization method for decoupling systems of partial differential equations 1617
Omar Lakkis and Charalambos Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems 1627
Carlo Lovadina and Rolf Stenberg, Energy norm a posteriori error estimates for mixed finite element methods 1659
Gabriel N. Gatica and Francisco-Javier Sayas, An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods ... 1675
Jayadeep Gopalakrishnan and Joseph E. Pasciak, The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations .. 1697
Volker Elling, A possible counterexample to well posedness of entropy solutions and to Godunov scheme convergence 1721
Bojan Popov and Ognian Trifonov, Order of convergence of second order schemes based on the minmod limiter 1735
Jianfeng Zhang, Rate of convergence of finite difference approximations for degenerate ordinary differential equations 1755
Robert Sinclair and Minoru Tanaka, Jacobi’s last geometric statement extends to a wider class of Liouville surfaces 1779
Christophe Berthon, Numerical approximations of the 10-moment Gaussian closure .. 1809
Clément Mouhot and Lorenzo Pareschi, Fast algorithms for computing the Boltzmann collision operator 1833
Shuai Lu and Sergei V. Pereverzev, Numerical differentiation from a viewpoint of regularization theory 1853
Helmut Harbrecht and Rob Stevenson, Wavelets with patchwise cancellation properties .. 1871
Dirk Laurie and Johan de Villiers, Orthogonal polynomials for refinable linear functionals .. 1891
Yi Jin, On efficient computation and asymptotic sharpness of Kalantari’s bounds for zeros of polynomials ... 1905
Peter Mathé and Sergei V. Pereverzev, Regularization of some linear ill-posed problems with discretized random noisy data 1913
Dorin Ervin Dutkay and Palle E. T. Jorgensen, Iterated function systems, Ruelle operators, and invariant projective measures 1931
Tatjana Eisner and Hans Zwart, Continuous-time Kreiss resolvent condition on infinite-dimensional spaces 1971
Ren-Cang Li, Lower bounds for the condition number of a real confluent Vandermonde matrix .. 1987
K. G. Hare and C. J. Smyth, The monic integer transfinite diameter ... 1997
S. Gurak, On the minimal polynomial of Gauss periods for prime powers . 2021
Thorsten Kleinjung, On polynomial selection for the general number field sieve ... 2037
Antonio Cafure and Guillermo Matera, Fast computation of a rational point of a variety over a finite field 2049
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/cgi-bin/peertrack/submission.pl, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The list of classifications is also available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/publications/. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \texttt{AMS-LtEX}. To this end, the Society has prepared \texttt{AMS-LtEX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \texttt{AMS-LtEX} style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \texttt{\LaTeX}, using \texttt{AMS-LtEX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \texttt{AMS-LtEX} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\texttt{AMS-LtEX} is the highly preferred format of \texttt{\LaTeX}, but author packages are also available in \texttt{AMS-TtEX}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \texttt{I\LaTeX} or plain \texttt{\LaTeX} are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production.
system. \LaTeX users will find that \AMS-\LaTeX is the same as \LaTeX with additional commands to simplify the typesetting of mathematics, and users of plain \TeX should have the foundation for learning \AMS-\LaTeX.

Authors may retrieve an author package from the AMS website starting from \url{www.ams.org/tex/} or via FTP to \url{ftp.ams.org} (login as anonymous, enter username as password, and type cd pub/author-info). The \AMS Author Handbook and the Instruction Manual are available in PDF format following the author packages link from \url{www.ams.org/tex/}. The author package can also be obtained free of charge by sending email to tech-support@ams.org (Internet) or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify \AMS-\LaTeX or \AMS-\TEX and the publication in which your paper will appear. Please be sure to include your complete email address.

After acceptance. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at \url{www.ams.org/submit-book-journal/}, sent via email to pub-submit@ams.org (Internet), or sent on diskette to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via email or diskette, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from \url{www.ams.org/jourhtml/authors.html}. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

AMS policy on making changes to articles after posting. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata
Secure manuscript tracking on the Web and via email. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/ or via email sent to mstrack-query@ams.org. To access by email, on the subject line of the message simply enter the AMS ID and Article ID. To track more than one manuscript by email, choose one of the Article IDs and enter the AMS ID and the Article ID followed by the word all on the subject line. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

TEX files available upon request. TEX files are available upon request for authors by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The TEX file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. **Note:** Because TEX production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, TEX files cannot be guaranteed to run through the author’s version of TEX without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s TEX environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

Editorial Committee

SUSANNE C. BRENNER, Department of Mathematics, University of South Carolina, Columbia, SC 29208 USA; E-mail: brenner@math.sc.edu

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.cools@cs.kuleuven.ac.be

HARALD NIEDERREITER, Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore; E-mail: nied@math.nus.edu.sg

CHI-WANG SHU, Chair. Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; E-mail: mathcomp@dam.brown.edu

Board of Associate Editors

RANDOLPH E. BANK, Department of Mathematics, University of California San Diego, C-012, La Jolla, CA 92093-0001 USA; E-mail: reb@sdna2.ucsd.edu

PETER B. BORWEIN, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC, Canada V6T 1Z2; E-mail: pborwein@cecm.sfu.ca

DAVID W. BOYD, Department of Mathematics, University of British Columbia, Vancouver, BC Canada V6T 1Z2; E-mail: boyd@math.ubc.ca

RICHARD P. BRENT, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, England; E-mail: Richard.Brent@comlab.ox.ac.uk

CARSTEN CARSTENSEN, Humboldt-Universität zu Berlin, Department of Mathematics, Unter den Linden 6, D-10099 Berlin, Germany; E-mail: mathcomp@math.hu-berlin.de
(Continued from back cover)

Tatjana Eisner and Hans Zwart, Continuous-time Kreiss resolvent condition on infinite-dimensional spaces .. 1971

Ren-Cang Li, Lower bounds for the condition number of a real confluent Vandermonde matrix ... 1987

S. Gurak, On the minimal polynomial of Gauss periods for prime powers . 2021

Thorsten Kleinjung, On polynomial selection for the general number field sieve ... 2037

Antonio Cafure and Guillermo Matera, Fast computation of a rational point of a variety over a finite field .. 2049
MATHEMATICS OF COMPUTATION
CONTENTS
Vol. 75, No. 256 October 2006

Carsten Carstensen, W. Liu, and N. Yan, A posteriori FE error control
for p-Laplacian by gradient recovery in quasi-norm 1599
Jicheng Jin, Shi Shu, and Jinchao Xu, A two-grid discretization method
for decoupling systems of partial differential equations 1617
Omar Lakiss and Charalampos Makridakis, Elliptic reconstruction and
a posteriori error estimates for fully discrete linear parabolic problems 1627
Carlo Lovadina and Rolf Stenberg, Energy norm a posteriori error
estimates for mixed finite element methods ... 1659
Gabriel N. Gatica and Francisco-Javier Sayas, An a priori error analysis
for the coupling of local discontinuous Galerkin and boundary element
methods ... 1675
Jayadeep Gopalakrishnan and Joseph E. Pasciak, The convergence
of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell
equations .. 1697
Volker Elling, A possible counterexample to well posedness of entropy
solutions and to Godunov scheme convergence .. 1721
Bojan Popov and Ognian Trifonov, Order of convergence of second order
schemes based on the minmod limiter ... 1735
Jianfeng Zhang, Rate of convergence of finite difference approximations for
degenerate ordinary differential equations .. 1755
Robert Sinclair and Minoru Tanaka, Jacobi's last geometric statement
extends to a wider class of Liouville surfaces .. 1779
Christophe Berthon, Numerical approximations of the 10-moment
Gaussian closure .. 1809
Clément Mouhot and Lorenzo Pareschi, Fast algorithms for computing
the Boltzmann collision operator .. 1833
Shuai Lu and Sergei V. Pereverzev, Numerical differentiation from a
viewpoint of regularization theory .. 1853
Helmut Harbrecht and Rob Stevenson, Wavelets with patchwise
cancellation properties .. 1871
Dirk Laurie and Johan de Villiers, Orthogonal polynomials for refinable
linear functionals ... 1891
Yi Jin, On efficient computation and asymptotic sharpness of Kalantari's
bounds for zeros of polynomials ... 1905
Peter Mathé and Sergei V. Pereverzev, Regularization of some linear
ill-posed problems with discretized random noisy data 1913
Dorin Ervin Dutkay and Palle E. T. Jorgensen,Iterated function
systems, Ruelle operators, and invariant projective measures 1931

(Continued on inside back cover)