DETECTING PERFECT POWERS
BY FACTORING INTO COPRIMES

DANIEL J. BERNSTEIN, HENDRIK W. LENSTRA, JR., AND JONATHAN PILA

Abstract. This paper presents an algorithm that, given an integer \(n \), finds the largest integer \(k \) such that \(n \) is a \(k \)-th power. A previous algorithm by the first author took time \(b^{l+o(1)} \) where \(b = \lg n \); more precisely, time \(b \exp(O\sqrt{\lg b \lg \lg b}) \); conjecturally, time \(b (\lg b)^{O(1)} \). The new algorithm takes time \(b (\lg b)^{O(1)} \). It relies on relatively complicated subroutines—specifically, on the first author’s fast algorithm to factor integers into coprimes—but it allows a proof of the \(b (\lg b)^{O(1)} \) bound without much background; the previous proof of \(b^{l+o(1)} \) relied on transcendental number theory.

The computation of \(k \) is the first step, and occasionally the bottleneck, in many number-theoretic algorithms: the Agrawal-Kayal-Saxena primality test, for example, and the number-field sieve for integer factorization.

Here is an algorithm that, given an integer \(n > 1 \), finds the largest integer \(k \) such that \(n \) is a \(k \)-th power:

1. For each prime power \(q \) such that \(2^q \leq n \), write down a positive integer \(r_q \) such that if \(n \) is a \(q \)-th power then \(n = r_q^q \).
2. Find a finite coprime set \(P \) of integers larger than 1 such that each of \(n, r_2, r_3, r_4, r_5, r_7, \ldots \) is a product of powers of elements of \(P \). (In this paper, “coprime” means “pairwise coprime.”)
3. Factor \(n \) as \(\prod_{p \in P} p^{a_p} \), and compute \(k = \gcd\{n_p : p \in P\} \).

It is easy to see that the algorithm is correct. Say \(n \) is an \(\ell \)-th power. Take any prime power \(q \) dividing \(\ell \). Then \(n \) is a \(q \)-th power, so \(n = r_q^q \); but \(r_q \) is a product \(\prod_{p \in P} p^{a_p} \) for some exponents \(a_p \), so \(n \) is a product \(\prod_{p \in P} p^{a_p} \). Factorizations over \(P \) are unique, so \(n_p = q a_p \) for each \(p \). Thus \(q \) divides \(\gcd\{n_p : p \in P\} = k \). This is true for all \(q \), so \(\ell \) divides \(k \). Conversely, \(n \) is certainly a \(k \)-th power.

Take, for example, \(n = 49787136 < 2^{20} \). Compute approximations:

\[
\begin{align*}
 r_2 &= 7056 \approx n^{1/2} \\
 r_3 &= 368 \approx n^{1/3} \\
 r_4 &= 84 \approx n^{1/4} \\
 r_5 &= 35 \approx n^{1/5} \\
 r_7 &= 13 \approx n^{1/7} \\
 r_8 &= 9 \approx n^{1/8} \\
 r_9 &= 7 \approx n^{1/9} \\
 r_{11} &= 5 \approx n^{1/11} \\
 r_{13} &= 4 \approx n^{1/13} \\
 r_{16} &= 3 \approx n^{1/16} \\
 r_{17} &= 3 \approx n^{1/17} \\
 r_{19} &= 3 \approx n^{1/19} \\
 r_{21} &= 2 \approx n^{1/21} \\
 r_{23} &= 2 \approx n^{1/23} \\
 r_{25} &= 2 \approx n^{1/25} \\
\end{align*}
\]

Received by the editor July 2, 2004 and, in revised form, May 10, 2005.
2000 Mathematics Subject Classification. Primary 11Y16.
Initial work: Lenstra was supported by the National Science Foundation under grant DMS–9224205. Subsequent work: Bernstein was supported by the National Science Foundation under grant DMS–0140542. The authors thank the University of California at Berkeley and the Fields Institute for Research in Mathematical Sciences.

©2006 by the authors
where \(\approx \) means “within 0.6.” Factor \(\{49787136, 7056, 368, 84, 35, 13, 9, 7, 5, 4, 3, 2\} \) into coprimes: each of these numbers is a product of powers of elements of \(P = \{2, 3, 5, 7, 13, 23\} \). In particular, \(n = 2^8 3^4 5^0 7^4 13^0 23^0 \), so \(k = \gcd\{8, 4, 0, 4, 0, 0\} = 4 \).

In other words, \(n \) is a 4th power, and is not an \(\ell \)th power for \(\ell > 4 \).

As discussed below, the literature already shows how to perform each step of this algorithm in time \(b(\lg b)^{O(1)} \), where \(b = \lg n \). Computing \(n^{1/k} \), which is used by some applications, also takes time \(b(\lg b)^{O(1)} \).

Details of Step 1. Here is one of several standard ways to handle Step 1.

Given \(n \) and \(q \), use binary search and Newton’s method to compute a floating-point number guaranteed to be within \(2^{-32} \) of \(n^{1/q} \), as explained in [4, Sections 8 and 10]. The algorithms of [4] rely on FFT-based integer multiplication; see [6, Sections 17 and 22].

Define \(r_q \) as an integer within \(2^{-32} \) of this floating-point number. If no such integer exists, define \(r_q = 1 \).

Each \(r_q \) has \(O(b/q) \) bits. Together the \(r_q \)’s have \(\sum_{q \leq \lg n} O(b/q) = O(b \lg \lg b) \) bits by Mertens’s theorem. The algorithms of [4] take time \((\lg b)^{O(1)} \) per bit.

Another standard way to handle Step 1 is to define \(r_q \) as an integer 2-adically close to \(n^{1/q} \), as explained in [4, Section 21].

One can change the bound \(2^{-32} \). We caution the reader that the two numerical examples in this paper use different bounds. A smaller bound requires a higher-precision computation of \(n^{1/q} \) but—for typical distributions of \(n \)—is more likely to produce \(r_q = 1 \), reducing the load on subsequent steps of the algorithm. The typical behavior of the algorithm is discussed below in more detail.

Details of Step 2. Given a finite set of positive integers, the algorithm of [5, Section 18] computes the “natural coprime base” for that set. The algorithm takes time \(s(\lg s)^{O(1)} \) where \(s \) is the number of input bits. The algorithm relies on FFT-based multiplication, division, and gcd; see [6, Sections 17 and 22].

Use this algorithm to compute the “natural coprime base” \(P \) for \(\{n, r_2, \ldots\} \). Together \(n, r_2, \ldots \) have \(O(b \lg \lg b) \) bits, so this takes time \(b(\lg b)^{O(1)} \).

Details of Step 3. Given a finite coprime set \(P \) of integers larger than 1, and given a positive integer that has a factorization over \(P \), the algorithm of [5, Section 20] finds that factorization. The algorithm takes time \(s(\lg s)^{O(1)} \) where \(s \) is the number of input bits. The algorithm relies on FFT-based arithmetic.

Use this algorithm to factor \(n \) over \(P \). Together \(n \) and \(P \) have \(O(b \lg \lg b) \) bits, so this takes time \(b(\lg b)^{O(1)} \).

Competition. Previous work by the first author in [4] had already shown that \(k \) could be computed in time \(b^{1+o(1)} \). The algorithm of [4] computes \(r_q \) for prime numbers \(q \), and then computes several increasingly precise approximations to \(r_q^q \), stopping when an approximation demonstrates that \(r_q^q \neq n \).

The run-time bound for the algorithm in this paper has two advantages over the run-time bound for the algorithm in [4]:

- The new bound is smaller. The old bound was \(b^{\exp(O(\sqrt{\lg b \lg \lg b})}) \); the new bound is \(b(\lg b)^{O(1)} \).
- The new proof requires considerably less background. The new proof relies on the first author’s results in [5] on factoring into coprimes, but the old proof relied on deep results in transcendental number theory.
The old algorithm is conjectured to take time $b(|b|)^{O(1)}$, as discussed in [4, Section 15], but this conjecture seems very difficult to prove.

Performance in the typical case. For most values of n, computing a floating-point number within 2^{-32} of $n^{1/2}$ reveals immediately that n is not a square, because the floating-point number is not within 2^{-32} of an integer.

Similarly, for almost all values of n, computing reasonably precise floating-point approximations to $n^{1/2}$, $n^{1/3}$, ..., reveals immediately that $k = 1$. Here one can define “reasonably precise” as, e.g., “within $2^{-32}/b$.” For example, take $n = 3141592653589793238462643383$, and compute

\[56049912163979.2869928550892 \approx n^{1/2},\quad r_2 = r_4 = r_8 = r_{16} = r_{32} = r_{64} = 1;\]
\[146591887.5615232630107 \approx n^{1/3},\quad r_3 = r_9 = r_{27} = r_{81} = 1;\]
\[315812.9791837632319 \approx n^{1/5},\quad r_5 = r_{25} = 1;\]
\[847.5479301649371 \approx n^{1/7},\quad r_7 = r_{49} = 1;\]
\[316.0391590557065 \approx n^{1/11},\quad r_{11} = 1;\]
\[130.3663105302392 \approx n^{1/13},\quad r_{13} = 1;\]
\[41.4456928612363 \approx n^{1/17},\quad r_{17} = 1;\]
\[28.0038933071808 \approx n^{1/19},\quad r_{19} = 1;\]
\[15.6865795173630 \approx n^{1/23},\quad r_{23} = 1;\]
\[8.8751884186190 \approx n^{1/29},\quad r_{29} = 1;\]
\[7.7091205087505 \approx n^{1/31},\quad r_{31} = 1;\]
\[5.5356192737976 \approx n^{1/37},\quad r_{37} = 1;\]
\[4.684486605433 \approx n^{1/41},\quad r_{41} = 1;\]
\[4.3598204254547 \approx n^{1/43},\quad r_{43} = 1;\]
\[3.8463229122474 \approx n^{1/47},\quad r_{47} = 1;\]
\[3.3022819333873 \approx n^{1/53},\quad r_{53} = 1;\]
\[2.9245118649948 \approx n^{1/59},\quad r_{59} = 1;\]
\[2.823403499139 \approx n^{1/61},\quad r_{61} = 1;\]
\[2.5727952305908 \approx n^{1/67},\quad r_{67} = 1;\]
\[2.4394043898716 \approx n^{1/71},\quad r_{71} = 1;\]
\[2.3805279554537 \approx n^{1/73},\quad r_{73} = 1;\]
\[2.2287696658789 \approx n^{1/79},\quad r_{79} = 1;\]
\[2.1443267449321 \approx n^{1/81},\quad r_{83} = 1;\]
\[2.0368391790628 \approx n^{1/89},\quad r_{89} = 1;\]

where now \approx means “within 2^{-40}.” Evidently $k = 1$.

For these typical values of n, there is no difference between the algorithm in this paper and the algorithm of [4]. All the time is spent computing approximate roots. Doing better means computing fewer roots—see [4, Section 22]—or computing the roots more quickly; these improvements apply equally to both algorithms.

For the other values of n—the atypical integers that are close to squares, cubes, etc.—the algorithms behave differently. It is not easy to analyze, or experiment with, the actual worst-case behavior of the algorithms, because it is not easy to find integers that are simultaneously close to many powers. We leave this as a challenge for the reader.

History. Bach, Driscoll, and Shallit in [2] introduced a quadratic-time algorithm to factor integers into coprimes. The obvious algorithm takes cubic time.
Bach and Sorenson in [3] published various algorithms to detect perfect powers, i.e., to check whether $k > 1$. One algorithm takes time $O(b^3)$. Another algorithm is conjectured to take time $O(b^2/(\lg b)^2)$ for most, but not all, n’s.

The second and third authors of this paper observed in early 1994 that they could compute k in time $O(b^2(\lg \lg b)^2)$ by factoring n, r_2, \ldots into coprimes with the Bach-Driscoll-Shallit algorithm; recall that n, r_2, \ldots together have $O(b \lg \lg b)$ bits. This line of work was abandoned several months later when the first author announced that k could be computed in time $b^{1+o(1)}$ by the increasingly-precise approximations-to-r^q method.

The first author later pointed out that this line of work deserved to be revived, since he had found an essentially-linear-time algorithm—see [5]—to factor integers into coprimes.

References

