Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A second-order Magnus-type integrator for quasi-linear parabolic problems

Authors: C. González and M. Thalhammer
Journal: Math. Comp. 76 (2007), 205-231
MSC (2000): Primary 35K55, 35K90, 65L20, 65M12
Published electronically: August 15, 2006
MathSciNet review: 2261018
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider an explicit exponential method of classical order two for the time discretisation of quasi-linear parabolic problems. The numerical scheme is based on a Magnus integrator and requires the evaluation of two exponentials per step. Our convergence analysis includes parabolic partial differential equations under a Dirichlet boundary condition and provides error estimates in Sobolev spaces. In an abstract formulation the initial boundary value problem is written as an initial value problem on a Banach space $ X$

$\displaystyle u'(t) = A\big(u(t)\big) u(t), \quad 0 < t \leq T, \qquad u(0)$    given$\displaystyle , $

involving the sectorial operator $ A(v):D \to X$ with domain $ D \subset X$ independent of $ v \in V \subset X$. Under reasonable regularity requirements on the problem, we prove the stability of the numerical method and derive error estimates in the norm of certain intermediate spaces between $ X$ and $ D$. Various applications and a numerical experiment illustrate the theoretical results.

References [Enhancements On Off] (What's this?)

  • 1. H. AMANN, Quasilinear evolution equations and parabolic systems. Trans. Amer. Math. Soc. 293 (1986) 191-227. MR 0814920 (87d:35070)
  • 2. H. AMANN, Dynamic theory of quasilinear parabolic equations - I. Abstract evolution equations. Nonlin. Anal. Th. Meth. and Appl. 12 (1988) 895-919. MR 0960634 (89j:35072)
  • 3. H. AMANN, Highly degenerate quasilinear parabolic systems. Ann. Scuola Norm. Sup. Pisa Ser. IV 18 (1991) 135-166. MR 1118224 (92m:35145)
  • 4. H. AMANN, Linear and Quasilinear Parabolic Problems. Vol. I Abstract Theory. In: Monographs in Mathematics Vol. 89, Birkhäuser, Basel, 1995. MR 1345385 (96g:34088)
  • 5. N. APARICIO, S. MALHAM, AND M. OLIVER, Numerical evaluation of the Evans function by Magnus integration (2004). BIT 45 (2005) 219-258. MR 2176193
  • 6. J. BERGH AND J. LÖFSTRÖM, Interpolation Spaces. An Introduction. Springer, Berlin, 1976.MR 0482275 (58:2349)
  • 7. S. BLANES, F. CASAS, AND J. ROS, Improved high order integrators based on the Magnus expansion. BIT 40 (2000) 434-450.MR 1780401 (2001f:65078)
  • 8. H. BRUNNNER AND P.J. VAN DER HOUWEN, The numerical solution of Volterra equations. CWI Monographs 3. North-Holland, Amsterdam, 1986. MR 0871871 (88g:65136)
  • 9. PH. CLÉMENT, C. J. VAN DUIJN, AND SHUANHU LI, On a nonlinear elliptic-parabolic partial differential equation system in a two-dimensional groundwater flow problem. SIAM J. Math. Anal. 23/4 (1992) 836-851.MR 1166560 (93h:35089)
  • 10. J. VAN DEN ESHOF AND M. HOCHBRUCK, Preconditioning Lanczos approximations to the matrix exponential (2004). To appear in SIAM J. Sci. Comp.
  • 11. C. GONZÁLEZ, A. OSTERMANN, AND M. THALHAMMER, A second-order Magnus integrator for non-autonomous parabolic problems (2004). J. Comp. Appl. Math. (in press).
  • 12. C. GONZÁLEZ AND C. PALENCIA, Stability of time-stepping methods for time-dependent parabolic problems: the Hölder case. Math. Comp. 68 (1999) 73-89. MR 1609666 (99c:65108)
  • 13. C. GONZÁLEZ AND C. PALENCIA, Stability of Runge-Kutta methods for quasilinear parabolic problems. Math. Comp. 69 (2000) 609-628. MR 1659851 (2000i:65130)
  • 14. P. GRISVARD, Caractérisation de quelques espaces d'interpolation. Arch. Rat. Mech. Anal. 25 (1967) 40-63.MR 0213864 (35:4718)
  • 15. D. HENRY, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840, Springer, Berlin, 1981. MR 0610244 (83j:35084)
  • 16. M. HOCHBRUCK AND CH. LUBICH, On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34 (1997) 1911-1925. MR 1472203 (98h:65018)
  • 17. M. HOCHBRUCK AND CH. LUBICH, On Magnus integrators for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 41 (2003) 945-963. MR 2005189 (2004g:65089)
  • 18. A. ISERLES AND S.P. NØRSETT, On the solution of linear differential equations in Lie groups. Phil. Trans. R. Soc. Lond. A 357 (1999) 983-1019. MR 1694700 (2000d:34022)
  • 19. CH. LUBICH, Integrators for Quantum Dynamics: A Numerical Analyst's Brief Review. In: Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes, J. Grotendorst, D. Mary, A. Muramatsu (Eds.), John von Neumann Institute for Computing, Jülich, NIC Series 10 (2002) 459-466.
  • 20. A. LUNARDI, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel, 1995.MR 1329547 (96e:47039)
  • 21. W. MAGNUS, On the exponential solution of a differential equation for a linear operator. Comm. Pure Appl. Math. 7 (1954) 649-673.MR 0067873 (16:790a)
  • 22. C. MOLER AND CH. VAN LOAN, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45 no. 1 (2003) 3-49. MR 1981253 (2004d:15012)
  • 23. H. MUNTHE-KAAS AND B. OWREN, Computations in a free Lie algebra. Phil. Trans. R. Soc. Lond. A 357 (1999) 957-981.MR 1694699 (2000f:17005)
  • 24. A. OSTERMANN AND M. THALHAMMER, Non-smooth data error estimates for linearly implicit Runge-Kutta methods. IMA J. Numer. Anal. 20 (2000) 167-184. MR 1752261 (2001a:65085)
  • 25. A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983.MR 0710486 (85g:47061)
  • 26. M. THALHAMMER, A second-order Magnus type integrator for non-autonomous semilinear parabolic problems (2004). Submitted to IMA J. Numer. Anal.
  • 27. M. THALHAMMER, A fourth-order commutator-free exponential integrator for non-autonomous differential equations (2005). Submitted to SIAM J. Numer. Anal.
  • 28. H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978. MR 0500580 (80i:46032a)
  • 29. J. WENSCH, M. D¨ANE, W. HERGERT, AND A. ERNST, The solution of stationary ODE problems in quantum mechanics by Magnus methods with stepsize control. Comp. Phys. Comm. 160 (2004) 129-139.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 35K55, 35K90, 65L20, 65M12

Retrieve articles in all journals with MSC (2000): 35K55, 35K90, 65L20, 65M12

Additional Information

C. González
Affiliation: Departamento de Matemática Aplicada y Computación, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain

M. Thalhammer
Affiliation: Institut für Mathematik, Fakultät für Mathematik, Informatik und Physik, Universität Innsbruck, Technikerstrasse 25/7, A-6020 Innsbruck, Austria

Keywords: Quasi-linear parabolic problems, Magnus integrators, stability, convergence
Received by editor(s): December 20, 2004
Received by editor(s) in revised form: September 30, 2005
Published electronically: August 15, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society