Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations


Authors: Yinnian He and Weiwei Sun
Journal: Math. Comp. 76 (2007), 115-136
MSC (2000): Primary 35L70; Secondary 65N30, 76D06
DOI: https://doi.org/10.1090/S0025-5718-06-01886-2
Published electronically: September 15, 2006
MathSciNet review: 2261014
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper provides an error analysis for the Crank-Nicolson extrapolation scheme of time discretization applied to the spatially discrete stabilized finite element approximation of the two-dimensional time-dependent Navier-Stokes problem, where the finite element space pair $ (X_h,M_h)$ for the approximation $ (u_h^n,p_h^n)$ of the velocity $ u$ and the pressure $ p$ is constructed by the low-order finite element: the $ Q_1-P_0$ quadrilateral element or the $ P_1-P_0$ triangle element with mesh size $ h$. Error estimates of the numerical solution $ (u_h^n,p_h^n)$ to the exact solution $ (u(t_n),p(t_n))$ with $ t_n\in (0,T]$ are derived.


References [Enhancements On Off] (What's this?)

  • 1. R. A. Adams, Sobolev Spaces, Academic press, New York, 1975. MR 0450957 (56:9247)
  • 2. A. Agouzal, A Posteriori error estimator for finite element discretizations of quasi-Newtonian flows, Int. J. Numer. Anal. & Modeling, 2(2005), pp. 221-239. MR 2111749 (2006b:76045)
  • 3. A. Ait Ou Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier-Stokes equations, Numer. Math., 68 (1994), pp. 189-213. MR 1283337 (95c:65174)
  • 4. I. Babuška, J. Osborn and J. Pitkaranta, Analysis of mixed methods using mesh dependent norms, Math. Comp., 35(1980), pp. 1039-1062. MR 0583486 (81m:65166)
  • 5. G. A. Baker, V. A. Dougalis and O. A. Karakashian, On a high order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comp., 39(1982), pp. 339-375. MR 0669634 (84h:65096)
  • 6. J. Bercovier and O. Pironneau, Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. Math., 33(1979), pp. 211-226. MR 0549450 (81g:65145)
  • 7. C. Bernardi and G. Raugel, A conforming finite element method for the time-dependent the Navier-Stokes equations, SIAM J. Numer. Anal., 22(1985), pp. 455-473. MR 0787570 (86j:65128)
  • 8. J. Boland and R. A. Nicolaides, Stability of finite elements under divergence constraints, SIAM J. Numer. Anal., 20(1983), 722-731.MR 0708453 (85e:65046)
  • 9. K. Boukir, Y. Maday, B. Métivet and E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, Int. J. Numer. Methods for Fluids, 25(1997), pp. 1421-1454. MR 1601529 (99a:76082)
  • 10. J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp., 50(1988), pp. 1-17. MR 0917816 (89m:65097a)
  • 11. J. H. Bramble and J. Xu, Some estimates for a weighted $ L^2$ projection, Math. Comp., 56(1991), pp. 463-576. MR 1066830 (91k:65140)
  • 12. F. Brezzi and J. Pitkäranta, On the stabilisation of finite element approximations of the Stokes problems, Efficient Solutions of Elliptic Systems (W. Hackbusch, ed.), Notes on Numerical Fluid Mechanics, Vol. 10, Vieweg, Braunschweig, 1984, pp. 11-19.MR 0804083 (86j:65147)
  • 13. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • 14. J. Douglas, Jr. and T. Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 7(1970), pp. 575-626. MR 0277126 (43:2863)
  • 15. J. Douglas, Jr. and J. Wang, A absolutely stabilized finite element method for the Stokes problem, Math. Comp., 52(1989), pp. 495-508. MR 0958871 (89j:65069)
  • 16. T. Dupont, G. Fairweather and J. P.Johnson, Three-level Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 11(1974), pp. 392-410. MR 0403259 (53:7071)
  • 17. H. Elman and D. Silvester, Fast nonsymmetric interations and preconditioning for Navier-Stokes equations, SIAM J. Scientific Comput., 17(1996), pp. 33-76. MR 1375264 (97e:65119)
  • 18. V. Girault and P. A. Raviart, Finite Element Method for Navier-Stokes Equations: theory and algorithms, Springer-Verlag, Berlin, Heidelberg 1987. MR 0851383 (88b:65129)
  • 19. J. L. Guermond and J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41(2003), pp. 112-134. MR 1974494 (2004c:65103)
  • 20. Yinnian He, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with $ H^2$ or $ H^1$ initial data, Numer. Methods for Partial Differential Equations, 21 (2005), pp. 875-904. MR 2154224 (2006d:65108)
  • 21. Yinnian He, A fully discrete stabilized finite element method for the time-dependent Navier-Stokes problem, IMA J. Numer. Anal., 23(2003), pp 665-691. MR 2011345 (2004m:65151)
  • 22. Yinnian He, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41(2003), pp. 1263-1285. MR 2034880 (2004k:65173)
  • 23. Yinnian He and K. M. Liu, A multi-level finite element method for the time-dependent Navier-Stokes equations, Numer. Methods for Partial Differential Equations, 21(2005), pp. 1052-1068. MR 2169167
  • 24. Yinnian He, Aiwen Wang and Liqun Mei, Stabilized finite element method for the stationary Navier-Stokes equations, J. Engineering Mathematics, 51(2005), pp. 367-380.MR 2146399 (2006a:65161)
  • 25. Yinnian He and Kaitai Li, Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations, Numer. Math., 79(1998), pp. 77-107.MR 1608417 (99c:65165)
  • 26. Yinnian He, Yanping Lin and Weiwei Sun, Stabilized finite element method for the Navier-Stokes problem, Discrete Contin. Dyn. Syst. series-B, 6(2006), pp. 41-68.MR 2172195
  • 27. J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19(1982), pp. 275-311. MR 0650052 (83d:65260)
  • 28. J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem IV: Error Analysis for second-order time discretization, SIAM J. Numer. Anal., 27(1990), pp. 353-384.MR 1043610 (92c:65133)
  • 29. A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal., 20(2000), pp. 633-667. MR 1795301 (2001j:37138)
  • 30. Kaitai Li and Yinnian He, Taylor expansion algorithm for the branching solution of the Navier-Stokes equations, Int. J. Numer. Anal. & Modeling, 2(2005), pp. 459-478. MR 2177873
  • 31. R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex polygon, J. Funct. Anal., 21(1976), pp. 397-431. MR 0404849 (53:8649)
  • 32. D. Kay and D. Silvester, A posteriori error estimation for stabilized mixed approximations of the Stokes equations, SIAM J. Sci. Comput., 21(2000), pp. 1321-1337.MR 1740398 (2000m:65130)
  • 33. N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp., 58(1992), pp. 1-10. MR 1106973 (92e:65138)
  • 34. S. Larsson, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems, SIAM J. Numer. Anal., 26(1989), pp. 348-365. MR 0987394 (90g:65124)
  • 35. M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal., 32(1995), pp. 1170-1186. MR 1342288 (96f:65136)
  • 36. S. Norburn and D. Silvester, Stabilised vs stable mixed methods for incompressible flow, Comput. Methods Appl. Mech. Engrg., 166(1998), pp.1-10. MR 1660188 (99i:76090)
  • 37. J. Pitkäranta and T. Saarinen, A multigrid version of a simple finite element method for the Stokes problem, Math. Comput., 45(1985), pp. 1-14. MR 0790640 (86h:65168)
  • 38. R. L. Sani, P. M. Gresho, R. L. Lee and D. F. Griffiths, The cause and cure(?) of the spuious pressures generated by certain finite element method solutions of the incompressible Navier-Stokes equations, Parts 1 and 2, Internat J. Numer. Methods Fluids 1(1981), pp. 17-43; pp. 171-206.MR 0608691 (83i:65083a); MR 0621064 (83i:65083b)
  • 39. J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Applicable Analysis, 38(1990), pp. 201-229.MR 1116181 (93a:65130)
  • 40. J. Shen, On error estimates of the projection methods for Navier-Stokes equations: Second order schemes, Math Comp., 65(1996), pp. 1039-1065.MR 1348047 (96j:65091)
  • 41. D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems, Part II: Using general block preconditioners, SIAM J. Numer. Anal., 31(1994), pp. 1352-1367. MR 1293519 (95g:65132)
  • 42. D. J. Silvester and N. Kechkar, Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. Methods Appl. Mech. Engrg., 79(1990), pp. 71-87.MR 1044204 (90m:76011)
  • 43. R. Stenberg, Analysis of mixed finite elements for the Stokes problem: A unified approach, Math. Comp., 42(1984), pp 9-23. MR 0725982 (84k:76014)
  • 44. E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math., 53(1988), pp. 459-484.MR 0951325 (90b:65214)
  • 45. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Third ed., North-Holland, Amsterdam, 1983. MR 0769654 (86m:76003)
  • 46. R. Verfürth, A multilevel algorithm for mixed problems, SIAM J. Numer. Anal., 21(1984), pp. 264-271. MR 0736330 (85f:65112)
  • 47. J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput.,15(1994), pp. 231-237. MR 1257166 (94m:65178)
  • 48. J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33(1996), pp. 1759-1778.MR 1411848 (97i:65169)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 35L70, 65N30, 76D06

Retrieve articles in all journals with MSC (2000): 35L70, 65N30, 76D06


Additional Information

Yinnian He
Affiliation: Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Email: heyn@mail.xjtu.edu.cn

Weiwei Sun
Affiliation: Department of Mathematics, City University of Hong Kong, Hong Kong, People’s Republic of China
Email: maweiw@math.cityu.edu.hk

DOI: https://doi.org/10.1090/S0025-5718-06-01886-2
Keywords: Navier--Stokes problem, stabilized finite element, Crank--Nicolson extrapolation scheme
Received by editor(s): November 22, 2004
Received by editor(s) in revised form: September 2, 2005
Published electronically: September 15, 2006
Additional Notes: The first author was supported in part by the NSF of the People’s Republic of China (10371095).
The second author was supported in part by the Research Grants Council of the Hong Kong Special Administrative Region, People’s Republic of China (Project No. City U 102103).
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society